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Mathematics 6

1. The graph of an equation y = f(x) is a curve in the zy-plane. The graph of an equation
z = f(z,y), on the other hand, is a surface in xyz-space. A familiar example is the graph of
z=14/9 — 22 — y?, which is a hemisphere of radius 3. For what points (x,y) is this function
(and the surface) defined? Find an equation for the plane that is tangent to the hemisphere
at (2,1,2).

2. The graph of the equation z = 9 — 22 — y? is a surface called a paraboloid.

(a) For what points (z,y) is the surface defined?

(b) Why do you think the surface was named as it is?

(c) Through any point on the paraboloid passes a circle that lies entirely on the paraboloid.
Explain. Could there be more than one circle through a single point?

(d) The plane that is tangent to the paraboloid at (0,0,9) is parallel to the zy-plane. This
should be evident. It should also be evident that the plane that is tangent to the paraboloid
at (1,2,4) is not parallel to the zy-plane. Can you think of a way to describe the “steepness”
of this plane numerically?

3. Verify that area of the parallelogram defined by two vectors [a, b] and [c,d] is |ad — bc|.
Explain the significance of the absolute-value signs in this formula. The expression ad — bc
is an example of a determinant. The sign of a determinant is an indication of orientation,
meaning that it can be used to distinguish clockwise from counterclockwise. Explain.

4. Suppose that a differentiable curve is defined parametrically by (z,y) = (f(t), g(t)) for
a <t < b. The area of the sector formed by the curve and the two radii joining the origin to
the initial point (f(a),g(a)) and the terminal point (f(b),g(b)) is equal to the value of the

integral
b
1 dy _ da
2/a (xdt dt) .

(a) First, check this result by applying it to an original example (one that no one else will
think of) that you already know how to find the area of.
(b) Next, prove the formula by viewing x dy — y dx as a determinant.

5. A wheel of radius 1 in the xzy-plane rolls counterclockwise without slipping around the
outside of the unit circle z2 + y?> = 1. A spot on the rim of the wheel is initially at (1,0).
The curve that is traced by the spot is called an epicycloid. Make a sketch.

(a) Does this curve repeat itself? Explain.

(b) After the wheel has rolled a quarter of the way around the circle, what are the coordinates
of the spot?

(c) After the wheel has rolled a third of the way around the circle, what are the coordinates
of the spot?

(d) After the wheel has rolled a distance t along the circle (think of ¢ as being between 0
and 27), what are the coordinates of the spot? (It helps to first find the center of the wheel
and then use a vector.)
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6. Let T'(z,y) be the temperature at point (x, y) on a rectangular plate (a modern stovetop,
perhaps) defined by @ < x < band ¢ <y < d. If T is a non-constant function, then is
natural to wonder how to describe rates of temperature change. For example, if the values*
7(9.0,12.0) = 240.0 and 7°(9.03, 12.04) = 239.0 are measured, then it is possible to calculate
an approximate value at (9.0, 12.0) for the directional derivative of T in the direction defined
by the unit vector u = [0.6,0.8]. Do so. The actual value of the derivative is usually denoted
D,T(9.0,12.0). If you wanted to calculate a more accurate value for D,7(9.0,12.0), what
data would you gather?

7. The easiest way to “gather data” is to have an explicit formula for T'(z,y), so suppose
that the temperature of the rectangular plate is known to be

6000
T =
(@) = G107+ (y — 107 7 20

at each of its points. Calculate a precise value for D,7(9.0,12.0), and compare it with your
previous estimate.

8. The value of a directional derivative is of course affected by the chosen direction, so it
should not be surprising to discover that Dy,7'(9.0,12.0) is not the same as D,7(9.0,12.0)
when v = [0.6, —0.8]. Verify this by calculating D,7(9.0,12.0).

9. For any unit vector u, how are the numbers D,T'(x,y) and D_,T(x,y) related?

10. When v = [0.6,0.8], the value of D,T(14.0,7.0) is intriguing. Calculate this number
and explain its significance.

11. Given a temperature function 7', what are the isotherms of T7 What is their relationship
to directional derivatives of 1?7

12. Return to the current temperature example 7', and find the unit vector u that makes
the value of D,T(14.0,7.0) as large as it can be. Explain your choice.

13. Return to the current temperature example 7', and notice that D,7(10.0,10.0) has a
predictable value, no matter what vector v is chosen. Explain.

14. The directions u = [1,0] and v = [0, 1] are special, and many notations are in common
use for the corresponding directional derivatives of T, which are known as the partial deriva-

tiwes of T'. For example, it is customary to replace Dy g1 by g—T, or D\T', or D, T, or even
x
T, (leaving out the differential indicator“d” entirely!).

(a) What are other possible notations that mean the same thing as D717
(b) Express the value of D,7(9.0,12.0) as a limit.
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15. Given a formula f(z,y) for a function of two variables, the significance of the partial
derivatives f, and f, is that

(a) each can be calculated by the familiar, straightforward technique of differentiating f
with respect to one variable, while treating the other variable as a constant;

(b) any other directional derivative D, f can be calculated easily by just combining the
components of vector u with the known values of f, and f,,.

Consider the example f(z,y) = z* + xy — 2y?, and the vector u = [0.6, —0.8]. Investigate
the preceding remarks by trying to calculate the values f,(1,3), f,(1,3), and fu(1,3) as
economically as you can.

16. Given the equation 422 + 9y? + 2?2 = 49, whose graph is called an ellipsoid, calculate
the partial derivatives z, and z,. Use these functions to find an equation for the plane that
is tangent to the ellipsoid at (1,2, 3). Implicit methods work best here. Although this is not
a surface of revolution, you should be able to draw a diagram.

17. (Continuation) Give several examples of vectors that are tangent to the ellipsoid at the
point (1,2, 3).

18. Given a function f that is differentiable, one can form the vector [f,, f,] at each point
in the domain of f. Any such vector is called a gradient vector, and the function whose
values are [fy, f,] is called a gradient field. Suppose that f(z,y) =9 — 2% — 2y*. Calculate
the gradient vector for f at (1,1). How is this vector related to the level curve 6 = f(x,y)?
Explain the terminology “level curve”.

19. The surface z = f(z,y), where f(z,y) = sinzsiny, and 0 < z < 27 and 0 < y <
27, is shown at right. Fifty curves have been traced on the surface, twenty—ﬁve in each
of the coordinate directions. The two curves
that go through (0,0,0) are segments on the (0.27,0)_

coordinate axes. Two of the curves go through
P (.2.3)

(a) Find this point in the figure.

(b) Calculate the derivatives f, and f, at P.
(c) Write parametric descriptions for the curves through
P (one in each coordinate direction).

(d) Find an equation for the plane tangent to the surface at P.

(e) Make a sketch that shows some level curves z = k for this surface.

(f) What are the coordinates of the summit of the hill on which P is located? Suppose that
a hiker wanted to follow the steepest possible path to the summit. Starting from P, in what
direction should this hiker walk?

(g) Make a sketch that shows how this surface would look to an observer whose eye is

positioned at (20, ,0).

'I
“ oo %,
W ""o,ﬁ','//%

K54
‘:‘,é,/’ (27,0,0)

August 2019 3 Phillips Exeter Academy



Mathematics 6

20. The point (3,1) is on the ellipse 22 + 2y? = 11. Find components for a vector that is
perpendicular to the ellipse at (3,1). Explain how the gradient concept can be applied to
this question.

21. Given a surface z = f(z,y), and a point P = (a, b, ¢) on that surface, explain why
(a) the vector [f,(a,b), f,(a,b)] is perpendicular to the curve f(z,y) = ¢;

(b) the vectors [1,0, f,(a,b)] and [0, 1, f,(a,b)] are tangent to the surface at P;

(c) the vector [f.(a,b), f,(a,b), —1] is perpendicular to the surface z = f(z,y) at P.

22. Confirm that the space curve parametrized by (z,y,z) = (4cost,7cost,13sint) lies
entirely on the ellipsoid 1622 + 81y? + 2522 = 4225. Confirm also that the curve goes
through the point P = (3.2,5.6,7.8) on the ellipsoid. Calculate (a) the velocity vector at P
for this curve, and (b) a vector that is normal (perpendicular) to the ellipsoid at P. As a
check on your calculations, verify that your answers are perpendicular.

23. Calculate the gradient field for the function f(z,y) = z¥. For what values of x and y

does this make sense?” By the way, the standard notation for the gradient is V f. That’s
right — an upside-down A means “gradient”.

27
1 dy dx
1 W ydr ) g
2/0 <xdt dt)

along the curve parametrized by (x,y) = (¢,sint). Is the answer what you expected?

24. Evaluate the integral

25. The figure shows the surface z = f(z,y), where
flz,y) =2 —y* and —1 <z <land -1 <y <1
Fifty curves have been traced on the surface, twenty-
five in each of the coordinate directions. This saddle-

: : : . fodd — 22N
like surface is called a hyperbolic paraboloid, to distin- (110 MW&“‘ 1.1,0)
guish it from the elliptical (or circular) paraboloids ez N\ §

(1,1, 0) \NR )

you have already encountered. It has some unusual
features.

(a) What do all fifty curves have in common?

(b) Confirm that the line through (1,1,0) and (=1, —1,0) lies entirely on the surface.

(c) In addition to the line given, there is another line through the origin (0,0,0) that lies
entirely on the surface. Identify it.

(d) Find an equation for the plane that is tangent to the surface at (—1,0.5,0.75).

(e) Make a sketch that shows some level curves for this surface.

(f) Explain the name “hyperbolic paraboloid”.

(g) This surface contains many straight lines. In fact, for any point P on the surface, there
are two lines on the surface that meet at P. Confirm that this is true for (—1,0.5,0.75), by
finding a direction vector |[a, b, ¢| for each line.
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26. Suppose that T'(x,y) is a differentiable function and u is a unit vector. What does the
equation DT = ueVT mean? What does this equation tell you about the special case when
u points in the same direction as V1'?

27. Now that you have had some experience with directional derivatives, you can consider
the following question: What does it mean for a function T to be differentiable at a point
(a,b)? If you can, express your answer in limit notation.

28. If the function T'(z,y, z) describes the temperature of a substance at position (x,y, z),

then what is the meaning of the vector [g—T , g—T , (Z)_T] ? What does the configuration of
x Oy 0z
solutions to T'(z,y, z) = 23.6 represent, and what could it be called?

29. More fun with dot products. Let T(x,y) = 100 + 50 cos mx cos my for —2 < z < 2 and
—2 < y < 2 describe the temperature distribution on a hot plate, and suppose that a bug is
following the circular path (x,y) = (cost,sint) on the plate.

(a) Sketch a system of isotherms for this function. Graph the bug’s path on your diagram.
(b) When the bug passes over the point (0.8,0.6), at what rate is the temperature changing,
in degrees per second? You can express your answer as a dot product.

30. When you first learned about tangent lines, you probably assumed that tangent lines
must always stay on one side of the curve they are tangent to. Confronted by examples like
y = x3—2x at (1,—1), you then learned to regard one-sided behavior as a local phenomenon.
The final blow to your intuition came when you encountered your first inflection point, where
it is possible for a curve to lie locally on both sides of its tangent line.

Now that you have begun to explore planes tangent to surfaces, you should be ready to meet
some more counter-intuitive examples.

(a) It is possible for a non-planar surface to be tangent to a plane, and to meet that plane
along a line of intersection points. Give an example.

(b) It is possible for a non-planar surface to be tangent to a plane, and to meet that plane
along two lines of intersection points, both of which go through the unique point of tangency.
You have already seen an example — where?

31. Suppose that f is a differentiable function of x and y, and that (a,b) is a point at which
V [ is the zero vector. Is it necessarily true that f(a,b) is either a local maximum or a local
minimum? Explain.

32. You have seen that equations of the form f(z,y) = k define level curves of function f.
In the same way, equations of the form g(z,y, z) = k define level surfaces of function g. The
equation 22 + y? + 22 = r? is a familiar example. Invent another. Given such an equation,
and a point (a, b, ¢) on one of the level surfaces, how could you quickly find a vector that is
perpendicular to the surface at (a,b,c)? Illustrate by doing an example.
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33. from Math 210: Find a vector that is perpendicular to the line 3z + 4y = 23 at the
point (5, 2).

34. from Math 330: Find a vector that is perpendicular to the plane 2x 4 3y + 62z = 53 at
the point (4,1,7).

35. from Math 420: Find a vector that is perpendicular to the curve 22 + y3 = 3zy + 3 at
the point (2,1).

36. a new version of the Chain Rule. If z = T(x,y) defines a differentiable function,
and if (z,y) = (f(t),g(t)) defines a differentiable path, the composite function defined by
h(t) =T(f(t),q(t)) is also differentiable, and h'(t) = T, (f(t), g(t))f' (t) + T,(f(t),9(t))g (¢).
Using Leibniz notation and hiding the function names gives the equation a familiar look:

de _ Dzde , 92y
dt Oxdt Oydt

Justify this equation, and make up a new example that illustrates its use.

37. Evaluate the integral

2
1 dy dx
= —Z —y== ] dt.
2 /0 (x at ~ Vat )
along the curve parametrized by /

z = (1+2cost)cost
y = (1+2cost)sint

in the diagram. Interpret your result.

38. The surface z = zy is a saddle. Through any point on this surface, there pass two
straight lines that lie on the surface. Confirm that this is true. In particular, find equations
for the two lines that pass through the point (2,1, 2).

39. You are of course familiar with the formulas z = rcos and y = rsiné (which convert
polar coordinates into Cartesian coordinates), and also with the formulas r? = 2% + y* and
tanf = y/x (which convert Cartesian coordinates into polar coordinates). Use these to

calculate 9% (which is a function of r and 6) and % (which is a function of z and y). Are

the results what you expected?

40. Consider the function defined by f(x,y) = 2* + 3° — 3zy.

(a) Find all the critical points of f.

(b) Decide whether any of them correspond to extreme values of the function.
(c) Show that the surface z = f(x,y) has a straight line ruled on it.
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41. The figure shows the part of the surface z = 2% + 3 — 3zy
defined for —0.6 < x < 1.4 and —0.6 < y < 1.4. Use this to help
you sketch a system of level curves z = k for the surface. By the
way, the case k = —1 is interesting.

42. Find the point on the plane ax + by + cz = d that is closest
to the origin. What is the distance from the origin to this plane?
Your answers will of course depend on a, b, ¢, and d.

Al
oy
I

43. The surface 22 = 4x? + 4y9? is a familiar geometric object.
What is it called?

44. The point P = (1.6,1.2,0.936) lies on the space curve that is
parametrized by (z,y,z) = C(t) = (2cost,2sint,sin 3t). Explore the
meaning of the terminology center of curvature of this curve at P.

45. Consider the function F' defined by F(z,y) = #y‘%“ for all points in the zy-plane.
(a) Show that all the level curves for the surface z = F'(z,y) are circles. Make a diagram.
(b) Show that F' has two critical points — one is a local maximum, and the other is a local
minimum.

(c) Show that the unit circle provides the route of steepest ascent from (0.8, —0.6,—0.6) to

(0.28,0.96,0.96).

46. The point P = (2,1, 3) is on the hyperboloid x* + 4y* + 1 = 22

(a) Find an equation for the plane that is tangent at P to this surface.

(b) Explain the descriptive name for the surface.

(c) Show that there is no line through P that lies completely on this surface.

47. Verify that the point Q = (7,2,8) is on the hyperboloid 2% + 4y? — 1 = 22

(a) Show that every level curve z = k is an ellipse.

(b) Conclude that this hyperboloid is a connected surface, in contrast to the preceding
example, which had two separate parts. (Using the classical terminology, this is a one-sheeted
hyperboloid, and the preceding example is a two-sheeted hyperboloid.) Make a sketch of the
surface that is consistent with your findings.

(c) Show that the line (z,y, z) = (7 + 8t,2 4+ 3t,8 + 10t) lies completely on the hyperboloid.
(d) Find another line through @ that also lies completely on this surface.
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48. Given functions P(z,y) and Q(x,y), and a path C : (x,y) = (z(t),y(t)) parametrized
b

for a <t < b, the integral formula / <P(x, y)ccll—f + Q(z, y)%) dt, usually abbreviated to

just fc Pdx + Qdy, is called a line integral. How is the value of a line integral affected if
the path C is replaced by tracing its curve in the opposite direction? Explain.

49. Suppose that [P(z,y), Q(x,y)] is a gradient field, and that C is a piecewise differentiable
path in the xy-plane. It so happens that the value of fc Pdx + Q) dy depends only on the
endpoints of the curve traced by C.

(a) Verify this for the field [xy?, 2%y] by selecting at least two different piecewise differentiable
paths from (0, —1) to (1,1) and evaluating both integrals.

(b) Use the Chain Rule to prove the assertion in generality.

49.
50. What is the value of a line integral [, Pdz + Q dy when [P(z,y),Q(z,y)] is a gradient
field, and the integration path C is closed?

which are defined at

51. Consider the functions P(z,y) = ﬁ_——liny and Q(z,y) = ﬁ,

all points of the xy-plane except the origin. Is [P, Q)] a gradient field in this region?

52. Evaluate fc Pdx + Qdy, where [P,Q)] is the field in the preceding question, and C is
the unit circle traced in a counterclockwise sense. Hmm . ..

53. A single curve can be parametrized in infinitely many ways. For example, consider the
upper unit semicircle (x,y) = (cost,sint) for 0 < ¢ < 7. This arc can also be parametrized

=2t 1—+¢2
1+127 1+ ¢
and show that one parametrization proceeds with constant speed, while the other does not.
If a line integral calculation involved this semicircular arc, would it matter which of these
parametrizations was used? Explain.

rationally by the equation (z,y) = ) for —1 <t < 1. Verify that this is true,

54. (Continuation) Invent another parametrization of the upper unit semicircle.

55. Consider a fluid flowing over a region D of the plane. This can be modeled by using a
vector function ¥ (z,y) = [P(x,y), Q(x,y)] to indicate a velocity vector for the fluid particle
located at point (z,y) in D. We call such a representation a vector field on D. Sketch the
following vector fields for at least four points in the region {(z,y) : #? + y* < 16} and see if
you can understand the overall nature of the fluid flow:

(a) T(z,y)=lry+1]  (b) V(zy)=[~y.q]

—x —y . . . :
56. The vector field @ 2 yQ)S/Q} is a gradient field. Show this by finding an
“antiderivative” for it. Such an antiderivative is often called a potential function.

57. (Continuation) The preceding vector field is an example of an inverse-square field.
Explain the terminology.
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58. The equation 8(x —2) + 9(y + 1) + 12(z — 7) = 0 represents a plane. The left side of
the equation also has the look of a dot product. Make use of this observation to explain why
the vector [8,9, 12] is perpendicular to this plane.

59. The line (z,y,2) = (5 + 3t,1 + 2t,13 + 6t) intersects the plane that was given in the
previous question. What angle does the line make with the plane?

60. The length of vector u is m, and the length of vector v is n, and the angle formed by
u and v is 6. In terms of m, n, and 0, write the value of usv. For what 6 will the value of
the dot product be as large as it can be?

61. Find components for a nonzero vector that is perpendicular to both [3, 2, 6] and [8, 9, 12].

62. Find components for the vector that is obtained by (perpendicularly) projecting [3,2, 6]
onto the direction defined by [8,9,12].

63. Find components for the vector that is obtained by (perpendicularly) projecting [3, 2, 6]
onto the plane 8(z —2) +9(y + 1) +12(2 — 7) = 0.

64. A particle moves through three-dimensional space according to the parametric equation
(x,y,2) = (2cost,2sint,sin 3t). At what position(s) is the particle moving fastest? At what
position(s) is the particle moving slowest?

65. Vectors in the abstract. Suppose that f(¢) and g(t) are each defined continuously for
0 <t < 1. One of the interesting ways to look at a function is to regard it as an infinite-
dimensional vector, where each of its values is a separate component! With this startling
idea in mind, how would you interpret fol f(t)g(t)dt?

1
66. (Continuation) Find an interpretation for / f(t)?dt.
0

67. Evaluate the line integral fc Pdr+Qdy+ Rdz, given that [ P,Q, R] is the vector field

z Y z :
PR PRt i ) } , and C is the closed path defined
by (x,y,z) = (sint — cost,sint + cost, cos 2t) for 0 < t < 2.

68. For each positive integer n, and for any 0 < t < 1, let s,(t) = v/2sin(ant). Using the
sum to product rule below, evaluate fol Sp(t)sm(t) dt. The special case n = m is interesting.

cos (z —y) — cos (z + )
2

sinrsiny =
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69. Given a point P on a curve parametrized by (z,y,z) = (f(t),g(t),h(t)) in R3, the
normal plane at P is the plane that contains P and that is perpendicular to the curve, which
means perpendicular to the tangent vector [f'(t), ¢'(t), h'(t)].

Consider the heliz defined by (z,y, z) = H(t) = (cost,sint,t).

(a) Write an equation for the normal plane at time ¢ = a.

(b) Write an equation for the normal plane at a slightly later time ¢ = b.

(c) Find coordinates for two points that lie on the line where these two planes intersect.
(d) Create a vector that points in the direction of this line.

(e) Consider what happens to your vector as b approaches a.

70. New notation for vectors. In many calculus books, the unit vectors in the coordinate-
axis directions are given special names:

i=[1,0,0]
j=10,1,0]
k = [0,0, 1]

which means that [a, b, c| can be written ai + bj 4+ ck. Using this notation to express your
answer, find three mutually perpendicular vectors — other than i, j, and k — that all have
the same length.

71. The cross product. Given two vectors u = [p,q,r] and v = [d, e, f], there are infinitely
many vectors [a, b, ¢|] that are perpendicular to both u and v. It is a routine exercise in
algebra to find one, and it requires that you make a choice during the process. It so happens
that there is a “natural” way to make this choice, and an interesting formula results.

(a) Confirm that w = [qf — re,rd — pf, pe — qd] is perpendicular to both u and v.

(b) It is customary to call w the cross product of u and v, and to write w = u x v. Is it
true that u x v =v x u?

(c) Show that the length of u x v is equal to the length of u times the length of v times the
the sine of the angle formed by u and v.

(d) Give three explanations of the fact u x u = 0. Also explain why the zero is in boldface

type.
72. Find the length of the helical arc (z,y,2) = (acost,asint, bt) for 0 < ¢ < 27.

73. Find the area of the triangle whose vertices are A = (1,2,3), B = (7,5,5), and C' =
(8,6,7).

74. The curve parametrized by (x,y, z) = (t cos 27t, t sin 27t, 2t) lies on the conical surface
2?2 = 42% + 4y*. Confirm this, and make a sketch. Show that the curve goes through the
point (0,2.25,4.5). Show that its velocity vector at that point is tangent to the surface.
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75. More on the cross product. You now have a complicated formula that finds a vector
that is perpendicular to both i and j. Confirm the following special cases:

i=jxk
j=kxi
k=ix]j
—i=kxj
—j=ixk
-k=jxi

Use these results and the usual rules of algebra to derive the rest of the formula for

(pi+ qj+rk) x (di + ej + fk).

76. In multivariable calculus, one meets many types of functions. For example, we have
encountered real-valued functions of position (the temperature distribution on a hotplate),
vector-valued functions of position (the gradient of a real-valued function of position), and
point-valued functions of time (paths in the zy-plane or in zyz-space). One can also view
paths as vector-valued functions of ¢, by filling in the vectors that reach from the origin to
the points on the curve. In other words, (z(t),y(t),2(t)) and x(¢)i + y(¢)j + 2z(t)k describe
essentially the same thing.

One way to classify the different functions is to focus on the dimensions of the domain and
range spaces. For example, a curve in zyz-space is a correspondence from 1 dimension to 3
dimensions, symbolized R} — R3. Classify some other examples of functions.

77. In multivariable calculus, one encounters many versions of the product rule for differ-
entiation. For example, suppose that u(¢) and v(t) are vector-valued functions of . Then
f(t) = u(t)sv(t) is a real-valued function of t. Propose a product rule that covers this
situation, and test it on the vector functions u(t) = t?i+ (2 — cost)j and v(t) = (sint)i+tj.

78. In xyz-space, there is of course a rule for differentiating the cross product of vectors.
Formulate the rule and test it on an example of your invention.

79. Let u(t) be a vector that depends on ¢, and let f be a real-valued function of ¢. Then
v(t) = f(t)u(t) defines another vector-valued function of ¢t. Write out a product rule for
v'(t), and test it on the example u(t) = [cost,sint] and f(t) = 2"

80. Suppose that u(t) depends on ¢ (thus u is a path that traces a curve) in such a way
that u(t)su(t) has a constant value. Show that u(t) is perpendicular to u’(t). Give a familiar
geometric interpretation of this result.

81. A path u is called “smooth” provided that it is differentiable (meaning that u'(¢) is
defined throughout the path), and u/(¢) is never 0. For example, show that u(t) = t%i + 3]
is not smooth. What is the significance of the non-smoothness?
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82. Any path p whose trace (image) does not go through the origin can be expressed in the
form r(t)u(t), where u(t) is a unit vector for all £. Explain why, and apply this concept to
the example p(t) = [t, 1].

83. Calculate (ai + bj)+(ai+ bj). Is the result familiar?
84. Calculate (ai+ bj) x (ci+ dj). Could you have predicted the result?

85. Draw a diagram of a differentiable path p. Remember that each p(t) is a position vector
that connects the origin to a point on the curve. Use your diagram to illustrate the three
vectors

p(t+h) —p(t),

L (p(t+h) — p(t)), and

o PE+H) = B(E)

h—0

86. Suppose that

u(t) is a unit vector for all ¢,

the length of u/(¢) is a positive constant n, and

r(t) is differentiable so that 7/(t) = mr(t) for some constant m and all t.
Then the path defined by p(t) = r(¢)u(t) has the property that p(¢) and p’(¢) make the
same angle for all t. Show that this is true, by expressing the cosine of this angle in terms
of the constants m and n. Have you encountered examples like this before?

/
87. Given a path p, let T(t) = |g,8|

perpendicular to T(¢). Confirm this for the helix defined by p(t) = (acost,asint, bt).

be its unit tangent vector. Explain why T'(t) is

88. Interpret the following instance of the Chain Rule

dF _ 0Fdz , OFdy | OF dz
dt Or dt Oy dt 0z dt

in terms of the concepts you have met this term. In particular, use as much technical
vocabulary (gradient, directional derivative, dot product, level surface, velocity, etc) as you
can. In your discussion, consider the two special instances

dF Y (AN | (a2
ar _ _ |(dz dy dz
7 0 and 1 <dt) +<dt) +(dt> .
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89. Given that u/(t) is a constant vector m, what do you deduce about the path u?

90. The derivative of a function at a point is a local multiplier, which relates small changes
in domain values to correspondingly small changes in range values. In traditional symbols,

flp+Ap) — f(p) = f'(p)Ap
Af(p) = f'(p)Ap.

It is important to notice that the new examples we have met do not always allow us to divide
both sides of the approximation by Ap, which has been a common practice up until now.
Explain.

91. Consider a function T of the type R? — R! (temperature on a hotplate, for example).
Suppose that the temperature 7'(8,5) = 137, and the partial derivatives 7,.(8,5) = 6 and
T,(8,5) = —4 are known, and suppose that an estimate of 7°(8.3,5.7) is required. Calculate
one.

92. (Continuation) Explain why the gradient vector VT'(8,5) = [6, —4] serves as the local
multiplier that was needed to convert Ap = [0.3,0.7] into AT'(8,5) = —1.0. Thus it makes
sense to regard VT as “the derivative” of T" in this instance, and the terminology “partial
derivative” makes more sense, too.

93. It will be necessary to consider “second derivatives”. These have to be discussed “par-
tially” when considering functions of the type R?> — R!. In other words, you will see that
expressions such as

0 0T 0 0T

~—<= and =

Ox Ox dx Oy’
which are also written 2T 2T
o1 q 9L
ozz " Oxdy’

are useful. Other notations are T, and T},.

Starting with T'(x,y) = 2%, calculate all four second partials Ty, Ty, Tye, and T, You will
of course have to calculate T, and T}, first.

94. The temperature at point (z,y,z) is T(x,y,z) = p +y21?82’2 1 A bug is flying
through three-dimensional space, according to the equation (z,y, z) = (£, 3). Distances
are measured in centimeters, and time is measured in seconds. Describe the rate of temper-
ature change experienced by the bug as it passes the point (1,1,1). Give two answers, one

in degrees per second, and the other in degrees per centimeter.
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95. Find the size of the acute angle between the radial vector [x,y] and the tangent vector
for the spiral traced by [z, y] = 2¢[cos 2t, sin 27t]. Your answer should not depend on t.

96. It is a curiosity that 2* = 4%, and a challenging exercise to produce other pairs of positive
(and unequal) numbers that fit the equation z¥ = y*. You can use the equation-solving
capability of your calculator to find a few. You can also consider a parametric approach:
What is the intersection of the line y = maz and the graph of x¥ = y*?

97. (Continuation) Analyze the curve parametrized by x = t"/¢=1) and y = ¢/¢=Y. In
particular, evaluate the limiting behavior of x and y as ¢ approaches 0, 1, and oc.

98. The surface 22 + y? — 22 = 0 is a cone, and the surface 22 + %> — 22 = —1 consists of

two separated pieces. The surface 22 4+ y? — 22 = 1 consists of one connected piece. Discuss
these and other level surfaces for the function T'(x,y, z) = 2 + y* — 22, and make a sketch.

99. (Continuation) Describe a curve that goes through the point (1,1, 1) and that intersects
all of the level surfaces perpendicularly. Find two different parametrizations (paths) that
trace this curve.

100. Using perpendicularity. Suppose that u, v, and w are mutually perpendicular, and that
lu| =1, |[v|] =1, and |w| = 1. Calculate (au + bv + cw)s(au + bv + c¢w), in terms of the
scalars a, b, and c.

—2t ., 1

101. Let p(t) =
el =it e

j. Verify that |p(¢)| =1 for all ¢. Find p(¢)sp’(?).

102. Given a path p, it is customary to borrow terminology from physics and call p’ the
velocity of p, and to call p” the acceleration of p. Furthermore, if it is known that the
velocity is never 0, then the velocity can be expressed p’(t) = r(t)T(t), where r(t) = |p’(¢)|.
The vector T(t) is usually called the unit tangent for p(t). Why? What is r(t) usually
called? Find T(t) and r(t) for the example in the previous question.

103. (Continuation) Apply the product rule to p’(t) = r(¢)T(t), to calculate the acceleration
in terms of r(t), T(t), and their derivatives. This expresses the acceleration vector in terms
of two orthogonal (that means perpendicular) contributions — one resulting from a change
of speed, and the other resulting from a change of direction. Explain.

104. (Continuation) It is intuitive that acceleration due to changing direction is dependent
on two things — the speed and the curvature of the path. To better appreciate this, consider
the simple example p(t) = [rcoskt, rsin kt], where r and k are positive constants. In this
example, speed is constant — it is only direction that varies. Calculate p’(t) and p”(t), and
notice that they are orthogonal. Also verify that |T’| = v/r and |p”| = v?/r, where v is the
speed.
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105. Consider the parabolic curve y = %, which goes through the point P = (1,1).

(a) In terms of ¢, write an expression for the line that is orthogonal to the curve at (c, ¢?).
(b) Assuming that ¢ # 1, find the intersection R, of this line with the line y = (3 — ),
which is orthogonal to the curve at P.

(c) The intersection point R. depends on the value of ¢. Find the limiting position of R, as
¢ approaches 1. This is called the center of curvature of the parabola at P.

(d) Explain the terminology, and calculate the radius of curvature of the parabola at P.

Apply questions 2 through 7 to the curve parametrized by p(t) = [t, t?]:

106. Calculate the velocity vector v = p’, the acceleration vector a = v/ = p”, and the unit

tangent vector T = |Vi|v.

107.The function |v| is often written as %, and is called the speed of the parametrization.
2
Its derivative % is called the scalar acceleration. Calculate it.

2
d’s T+ ds T’ is expected, then calculate T’ as confirmation.

108. Explain why a = e il

109. You should expect that T’(1) points from P toward the center of curvature of the
parabolic arc traced by p(t). Explain why.

110.In general, T' is not a unit vector, but it can be expressed in the form mN, where N
is the unit normal vector and m is the magnitude of T'. Calculate m and N for the current
example.

111. Verify that |T'| = % at P = (1,1), where v is the speed % and r is the radius of

curvature calculated in question 1.

112.In a limiting sense, curvature describes the rate at which direction changes with respect
to distance traveled. According to this definition, the curvature of a circle of radius r is 1/r
(at each of its points). Explain.

113. The diagram shows a snapshot of a thread that is being unwound
from a spool of radius 1, represented by the unit circle 22 + y? = 1.
As the diagram suggests, the end of the thread was initially at (1,0).
Let (cost,sint) be the point where the thread is tangent to the spool.
Write an equation for the position of the end of the thread in terms
of t. The spiral traced by the end of the thread is called the involute
of the unit circle.

N
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114. Show that w = [3, 2] can be expressed as a linear combination au+bv of the orthonormal
vectors u = [0.8,0.6] and v = [—0.6,0.8] in one and only one way. In other words, find the
unique values a and b.

115. Verify that the vectors u; = [%, %, g} uy = [%, —g, %} uz = [g, %, —%} are orthonormal.
Verify also that u; x us = uz, which shows that the three vectors form a right-handed basis
for coordinates in R3. Finally, show that w = [5,1,0] can be expressed uniquely in the form
auy + buy + cus.

116. Given a curve parametrized by [z,y] = p(t), its radius of curvature is defined to be

where v = p’ and T is the unit tangent —. Explain the logic behind this definition.

vl

117.Recall the definition N = % Explain why N is perpendicular to T.

118. Recall that the acceleration vector is defined to be a = v/. Explain why

v[®
v x al
of the orthogonality of vectors in the preceding. Verify the formula, then use it to find the
radius of curvature of
(a) the parabolic curve traced by p(t) = [t, t%];
(b) the helical curve traced by p(t) = [bcost,bsint, mt], where m and b are positive con-
stants.

119. The convenient formula r =

for the radius of curvature is a simple consequence

120. Find the radii of curvature of the ellipse (z,y) = (acost,bsint) at the points where it
crosses the z- and y-axes.

121.Given a curve in R? that has been parametrized by a path p, let T be the unit tangent
vector and N be the unit normal vector. It is customary to call B = T x N the torsion
vector.

(a) Explain why B’ is perpendicular to B.

(b) Apply the product rule to BT to show that B’ is also perpendicular to T.

(1+ (f’(w)‘)Q)S/z |

122.Show that the radius of curvature of y = f(x) is ()
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123. Suppose that u is a unit vector. Explain why the length of the projection of any vector
v onto u is exactly veu.

124.1t is not surprising that the radius of curvature of p(¢) is undefined (infinite) if p(¢) is
a linear function. Show that this phenomenon also occurs for nonlinear examples such as
p(t) = [t,t*] and q(¢) = [t?,t%]. Why might the second example be surprising?

125. Suppose that the torsion vector B for a path p is constant. What does this say about
the path traced by p? Give an example to illustrate your conclusion.

126.Find the radius of curvature of the cycloid p(t) = [t —sint,1 — cost]. Where on the
curve is the largest radius found? Where on the curve is the smallest radius found?

127.Find the radius of curvature of the curve y = /. Compare this curve with the cycloid
in the vicinity of the origin.

128. Because there are many ways of parametrizing a given curve, it is conceivable that the
various formulas for the radius of curvature could assign different values to the same point!
Do an example that illustrates that this need not happen, then try to explain why it cannot
ever happen.

129. The diagram shows a polygonal approximation to the
orbit of a planet moving around the Sun S. Points F, and
P, are two positions of the planet that are separated by At
units of time. Point Hs is the position the planet would
reach during the next time interval At if there were no
gravitational force acting, and P is the actual position
reached, because the gravitational force from S causes a
velocity change Av = P;@Q;/At. Thus vectors PyP; and
Py Hy are the same, vectors P;(); and H, P, are the same,
and P, ()1, and S are collinear. Explain why the areas
of triangles SPyP;, SP1Hs, and SP, P, are the same. By S
letting At approach 0, deduce Kepler’s Second Law: The
radius vector from the Sun to one of its planets sweeps out equal areas in equal times.

130.Let r(t) be the radius vector from the Sun to one of its planets, and let v = r’ and
a = v'. Assume that gravity is a central force, which means simply that a is always some
negative multiple of r.

(a) Apply the Product Rule to show that r x v is a constant vector.

(b) Explain why |r x v| is the rate at which the Sun-planet radius vector sweeps out arca.
Show that this implies Kepler’s Second Law.
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131.Given the acceleration vectors p”(t) = [6t, cost], the velocity vector p’(0) = [1, 2], and
the position vector p(0) = [—m3, —1], calculate the position vector p(r).

132.There is yet another curvature formula that one often sees in the AP Calculus curricu-
lum: Given a parametrized curve (z(t),y(t)), its radius of curvature is

o) = @Oy
0y’ () =y (02" O]

Prove this formula, using what you have learned this term.

133.Find the area of the triangle PEA that is determined by the points P = (0,3,8),
E=(7,7,13), and A = (8, —1,18).

134.Given the cycloid p(t) = [t — sint,1 — cost], find explicit, simplified formulas for its
unit tangent vector T(¢) and its unit normal vector N(¢). In particular, evaluate T (7/2)

and N(7/2).

135. The diagram shows the circle traced parametrically
by a path p, as well as the vectors T, IN, and a at one of
the points P on the circle, whose center is C. Obtaining
all numerical data by measuring the diagram, calculate
plausible values for the radius of curvature, and for the

atives dS d (ds
derivatives 0t and 7 <dt> at P.

136. The evolute of a curve consists of its centers of cur-
vature. Show that the evolute of a cycloid is yet another
cycloid!

137. An object that moves in response to a central force
must have a planar orbit. In other words, if it is given that p”(¢) and p(t) are always parallel,
then the curve traced by p(f) must lie in a plane. Prove this statement.

138. The depth (in feet) of Lake Mathematica is f(z,y) = 300 — 222 — 3y*. A swimmer at
(2,1) is swimming in the direction that decreases the depth most rapidly.

(a) What direction is this?

(b) The swimmer is moving through the water at 4 fps. At what rate (in fps) is the depth
of the water beneath the swimmer decreasing?

139.Given that w = au + bv, where |u| = 1 = |v| and uev = 0, express the number |w| in
terms of the numbers a and b.
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140. Given three arbitrary vectors u, v, and w in R?, does the associative law
ux (vxw)=(uxv)xw
hold? In other words, can the parentheses be omitted?

141.Given three arbitrary vectors u, v, and w in R?, their triple scalar product is defined
to be ue(v x w).

(a) Explain the use of the word “scalar” in the definition.

(b) Show how to interpret the value of this expression as a volume.

(c) Show that the same value is obtained from ve(w x u) or we(u x v).

142.The generic equation for uniform circular motion is p(t) = r|cos kt,sin kt]. Given a
particular radius r, find (in terms of r) the value of k that makes the length of a = p” equal
to r=2. This formula for angular speed k solves a special version of the inverse-square law,
which requires only that the length of p” be proportional to r—2.

143. (Continuation) This formula for k(r) applies to a hypothetical planetary system. Show
that Kepler’s Third Law is satisfied by circular orbits in this system: In other words, the
square of a planet’s period is proportional to the cube of the radius of its orbit.

144.0Of all the points on the plane 3z + 4y + z = 52, find the one that is closest to the
origin. Instead of the usual approach, however, let f(z,y) be the square of the distance from
(x,y,52—3x —4y) to the origin. Find the desired point by calculating the partial derivatives
fz and f,, then using these to find the only critical point of f.

145. The figure shows an end view of a long strip
of metal that has been bent to form a channel.
The objective is to maximize the carrying capac-
ity of this channel, which means that the cross-
sectional area that is shown should be as large as
possible. The width of the strip is 1 meter, as
shown in the diagram. There are two variables in the figure; one is the width x of the two
equal outer sections, and the other is the bending angle 6. Use these two variables to express
the area of the trapezoid as a function A(z,6). Then calculate the partial derivatives A,
and Ay and look for critical points. Notice that the meaningful values for x and 6 lie in the
domain rectangle 0 < z < % and 0 < 0 < 7. Also be alert for algebraic shortcuts when
solving the equations A, = 0 and Ay = 0.

1—2x

146. Given that u and v are perpendicular vectors of unit length in R3, and that w = u x v,
show that u = v x w, and then that v=w x u.

147.1t is convenient to use polar coordinates to describe conic sections, by placing one of
the focal points at the origin (the pole). For example, the equation
b2
a+ ccost
describes an ellipse with symmetry axis lengths 2a and 2b, and focal separation 2¢, provided
that a® = b? + ¢%. Verify that this is so.
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148. Apply the Product Rule to r(t) = r(t)u(t), where u is a unit vector. This expresses
velocity in terms of a “radial” component and an “angular” component. Explain.

do

149.1n R?, unit vectors u can be considered functions of #. Justify the equation u’ = % uy,

dt

and comment on the notation uy.

150. Use the orthonormality of u and uy to show that

() )

which describes speed in terms of polar coordinates.

151. Kepler’s Laws are applicable to central forces that obey the inverse-square law, which
means that a =r" = —%u, for some positive constant g. Explain the notation.
r

152.1If the force that produces a is central, then we have shown that r x r’ is a constant
vector. Without loss of generality, let us assume that the constant vector is hk, for some
positive constant h, so that the planetary orbit lies in the xy-plane. Assume also that the
central force is directed toward the origin. This encourages the use of polar coordinates.

Show that Kepler’s Second Law can be stated in the form 7’2d_9 = h. This is remarkable

dt
because it applies to all orbits, not just the trivial circular ones that have constant values
for % and r.

153. The orthonormal basis u, uy, and k has been labeled so that u x uy = k. Explain why
this implies that k x u = uy and uy x k = u.

154. Justify each of the following lines:

—uXk:LIQ
—ux%k:u'
—guxfl—?k:gu’

a x hk = gu’

It follows that (v x hk) — gu is a constant vector, which can be denoted ge. Explain. Let
m = |e|. From now on, it will be assumed that e points in the direction of positive z-values.
This enables the use of polar coordinates in the plane of the orbit.

155. Kepler’s First Law: Justify the equation re(v x hk) = re(gu + ge), then evaluate both
sides of it to obtain h? = gr + gmr cosf. Show that this is the equation of a conic section,
whose major axis is aligned with e, and whose eccentricity is m.
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156. What are e and m in the special case of a circular orbit?

h*/g
1+ mcosf
is twice the rate at which the radial vector r sweeps out area, g is a physical constant that is
proportional to the mass of the Sun, u = [cos @, sin 0], and m is the eccentricity of the orbit
(which is between 0 and 1).

(a) Show that the mean distance from the planet to the Sun (which is half the length of the
h*/g

—m2

(b) Show that the distance from the Sun to the center of the orbit is mD, and half the length
of the minor axis is b = Dv1 — m?2.

157. You now know that a planetary orbit is described by r = ru = u, where h

major axis of the orbit) is D =

(c) Show that the length of time that it takes the planet to complete its orbit is 7 = %

(d) Kepler’s Third Law says that the square of a planet’s period is proportional to the cube
2

of its mean distance from the Sun. Confirm this by showing that g = 4%

158.Show that the length of vector dv/df is constant — an obvious property of circular
orbits that is true even for non-circular orbits. Show that the value of the constant is g/h.

159. (Continuation) Show that the vectors v (with their tails at the origin) trace a circle.

160. Thus far, you have seen the motion of a planet described explicitly in terms of theta.
Knowing how fast a planet actually moves along a non-circular orbit requires knowing 6 as
a function of ¢. This is a complicated question.

(a) Apply the Product Rule to r' = ru’ +7'u. Rearrange your answer so that a is expressed
in terms of a radial component and an angular component. (In other words, use the vectors

u and uy to organize your answer.) You will need to replace u’ by I,Igd—e Second derivatives

dt -
of r and # will appear in your answer.
(b) Because a is produced by a central force, one of the two components of a has to be zero.

Which one? Verify that it is zero.

161. Consider the function f(z,y) = 9zy(l —z —y).

(a) Sketch the level curve f(z,y) = 0. Then sketch a few other level curves, using your
intuition (no calculation needed).

(b) Find all the critical points of f. Classify each one as maximum, minimum, or saddle.

162.1t is well-known that circles have a constant radius of curvature. Consider the converse
statement: If a space curve has a constant radius of curvature ry, must the curve be a
(planar) circle?

163. Given an equation z = f(x,y), is it possible for two level curves of f to intersect?

164. Consider the logarithmic spiral p(t) = b'(icost + jsint). Show that |p(¢)| = b* and

Ip'(t)] = b'y/1+ (Inb)?.
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165.Let Q = (6,—1,11), P = (—4,5,-5), R = (7,6,6), and S = (9,9,12). The lines PQ
and RS do not intersect (they are called skew). Find the smallest distance that separates a
point on one line from a point on the other. There are two ways to solve this question —
one uses calculus, and the other does not. Find both methods.

166. To say that two skew lines in R? are “perpendicular” means that their direction vectors
are perpendicular. Suppose that ABCD is a tetrahedron (a triangular pyramid), in which
edges AB and C'D are perpendicular, and edges AC and BD are perpendicular. Prove that
edges AD and BC must also be perpendicular.

167. For each of the following, sketch level curves, and determine the nature of the critical
point at the origin:

(a) z = 22 + xy — y? (Hint: This can be factored.)

(b) z = 2* + 2¢?

(c) z =2xy — 2% — 2y
(d) 2 = 2% — 4xy + 4y* (Hint: This can be factored.)

2

168. The graph of an equation z = ax? + bxy + cy? is a surface that goes through the origin.
(a) Explain why the origin is a critical point for any such surface.

(b) Show that the surface intersects the xy-plane along two lines if 4ac < b?. Justify applying
the terminology saddle point to the origin in this case.

(c) Show that the surface intersects the zy-plane only at the origin if b* < 4ac. What is the
nature of the critical point at the origin in this case?

(d) What can be said about the remaining case, which is b* = 4ac?

169. Given a differentiable function f(z,y), its gradient vector [f,, f,] could be called the
derivative of f, because Af is approximated so well by [f, fy]+[Az, Ay]. Explain.

170. Given a real-valued function f(x,y), the matrix [ } of second partial derivatives

fyr fyy

is the derivative of the gradient, thus is the second derivative of f. Calculate this matrix for
the quadratic example f(z,y) = az? + bwy + cy?®. Show that the determinant of the second
derivative of f is 4ac — b?>. Hmm . ..

171. As shown in the diagram, a 2-meter length of wire is //\\
to be bent into the shape of a pentagon that has an axis

of reflective symmetry, and in which two adjacent angles
are right. What is the largest area that can be enclosed by

such a shape? (Hint: Be careful when you label the figure
— some variable choices work better than others.)
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172. Consider the logarithmic spiral p(t) = b'(icost + jsint). Show that its evolute (the
locus of its centers of curvature) is itself a logarithmic spiral.

173.Let A= (4,0), B=(0,3), C = (0,0), and P = (z,y). Find the coordinates of P, given
that PA + PB + PC is minimal. You may want to use an equation solver.

174.1f we let f(x,y) be the distance between (z,y) and (3,0), then ?f is a unit vector
pointing in a predictable direction. Explain.

175.Show that if |u;| = |uy| = |us| = 1 and u; + us + uz = 0, then the angle between any
two vectors u; must be 120°.

176.Show that (0,0) is a critical point of p(z,y) = y* + (zy — 1)%. To visualize what is
happening in the local vicinity of the point (0, 0), it might be useful to consider the behavior
of p(x,y) as the point (x,y) “passes” through (0,0) along the following lines:

e the line y = 0 (i.e. the z-axis)

e the liney ==z

e the line y = 2x
e the line y = 3z
e the liney = —x

Is p(z,y) continuous at (0,0)? In other words, does ( l)iH%o O)p(x, y) = p(0,0)7
x7y _> b

177.1s the following function continuous at (z,y) = (0,0)7

T3, 0.0
17 (I7y) = (07())
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178. The Second-Derivative Test. Given a surface z = f(x,y), and a point P = (a,b)
at which the gradient [f,(a,b), f,(a,b)] is 0, one encounters the classification problem: Is
f(a,b) a maximal z-value, a minimal z-value, or a saddle z-value? If the second-order partial
derivatives exist and are continuous, then the determinant

f:mc fxy
fya: fyy

often answers the question, because:

(a) if 0 < H(a,b) and 0 < f,.(a,b), then f(a,b) is a relative minimum;

(b)if 0 < H(a,b) and f,.(a,b) <0, then f(a,b) is a relative maximum;

(c) if H(a,b) <0, then f(a,b) is a saddle value.

If H(a,b) = 0, the theorem provides no information — anything can happen. Make up three
examples z = f(z,y) to illustrate how f(a, b) could be a maximal z-value, a minimal z-value,
or a saddle z-value in the ambiguous case H(a,b) = 0.

H= :fwxfyy_fxyfya:

179. The function H = fu; fyy — fuoy fys is sometimes called the Hessian of f. (By the way, in
any situation where the second-derivative test is applicable, the partial derivatives f,, and
fye are equal.) What would a Hessian function for w = f(x,y, 2) look like?

180. The intuitive content of the Second-Derivative Test stems from the Maclaurin-series
view of functions: If f is a “reasonable” function, then it is expected that

f(x,y) = aoo + a10r + ap 1y + CLQ,OJL’2 + ar xy + G0,2y2 + ..

holds for all suitably small values of x and y, where the coefficients a,, ,, are partial derivatives
of f, evaluated at (0,0) and divided by factorials; namely ago = f(0,0), and

1oy

~ minl dx™moy™

(0,0).

Am,n
In particular, if (0,0) is a critical point for f, then
F(2,9) = F(0,0) + & fu(0,0)2% + fuy (0,0)y + 5 (0, 0)5% + ..,

and the quadratic terms are responsible for revealing how z = f(z, y) relates to its horizontal
tangent plane at (0,0, f(0,0)). For example, consider f(x,y) = cosx cosy.

(a) Use the Maclaurin expansion of f to analyze the surface z = f(z,y) at (0,0, 1).

(b) Sketch several level curves of f.

181.Show that f(z,y) = 2 + y* — 32? — 23 — 29 has six critical points. Use the Hessian
function to classify each of them, then create a plausible system of level curves that is
consistent with your data.
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182. One reason why the Hessian test for critical points can fail is that a function can lack
both linear and quadratic terms at the origin. For example, consider the cubic polynomial
f(x,y) = 23 —3zy?, whose only critical point is at the origin. Sketch plausible level curves for
this function (it is not difficult), and thereby discover that there are actually many varieties
of saddle point. This example is called a “monkey” saddle. Explain why.

183. Consider the interesting function

zy(z® —y?)
Fz,y)=q 2>+y°
0, otherwise.

. if 0 < 2?4y

The surface z = F(z,y), in the vicinity of the origin, is shown below. Despite the awkward
definition, which requires that F'(0,0) be stated as a special case, F' is a continuous function.
It is actually differentiable, for its partial derivatives exist and are continuous everywhere,
even at the origin. Part (c) demonstrates that F' has a strange property, however.

(a) Calculate F,. This is a routine exercise at points other than the origin, and it requires
evaluating a limit at the origin.

(b) Calculate F,. This is a routine exercise at points other than the origin, and it requires
evaluating a limit at the origin.

(c) Use your formulas for F, and F, to show that F,,(0,0) = —1 and F},,(0,0) = 1. Each
result requires that you set up and evaluate a single limit.

(d) The continuity of F" and its first-order partial derivatives at the origin is most easily seen
by expressing them in terms of polar coordinates. For example, F'(r,0) = %TQ sin46. Verify
this formula, and find similar formulas for F}, and F}, in terms of r and 6.

The diagram on the left uses the Cartesian grid for —1 < x <1 and —1 <y <1 to display
the surface. The diagram on the right uses the polar grid for 0 < r < 1.25 to display the
same surface.
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184.The diagram shows part of the spiral traced by the
parametric equations

=cost+ tsint

y =sint — tcost.

Find the center of curvature at time 0 < ¢.

185. The line through (1,11, 1) and (7, 2, 13) does not inter-
sect the line through (—4,4,1) and (8,7,4). Find the dis-
tance between these skew lines at their closest approach.

i

186. Consider the function f(z,y) = (2% — y*)(z* + y* — 1).

(a) Make a large sketch of the level curves of the surface z = f(z,y).
(b) Calculate the gradient vector of f at (0.8,0.6), and add it to your diagram.
(c) What is the slope of the curve f(z,y) =12 at (2,1)7

(d) Find coordinates for all the critical points of f, and classify them.

187. Explain what it means for the vectors

3,-6,2] w=1[6,2 -3

2,3, 6] V= -

u =

30—
/=

to form an orthonormal system, and find scalars a, b, and ¢ so that [10,1,2] = au+bv + cw.

188. The parametric equations

o 6 cos kt

_ b6sinkt
24 coskt and Y

2+ coskt

describe the periodic motion of an object traveling along an ellipse in the zy-plane, where
k= %ﬂ'. Show that this path cannot represent the motion of a planet orbiting a sun at the
origin. One piece of evidence is enough.

189. The plane 4x + 2y + z = 12, together with the three coordinate
planes, creates a triangular pyramid in the first octant. A rectan-
gular box is inscribed in this pyramid, so that one of its corners is
at the origin. Find the volume of the largest such box, and use the

Second-Derivative Test to confirm the (local) maximum that you
find.
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190. An orthonormal system in R? is formed by the vectors

u1:%[1,2,2,4], u2=%[2,—1,—4>2]7 U3:%[2,4,—1,—2], U4:%[4,—2,2,_1]-

Find scalars ay, as, ag, and a4 so that [8,6,1,2] = ajuy + asuy + azus + aguy.

191. Consider the position vector p = [—3 + 5 cos kt, 4 sin kt], where k is a positive constant.
(Notice that t is not the polar angle.)

(a) It so happens that p describes the position of a object that moves along an ellipse, one
of whose focal points is at the origin. Find the eccentricity of the ellipse.

(b) No matter what value k has, this motion does not describe a planetary orbit. Confirm
this statement by calculating at least one piece of numerical evidence.

192. You have seen this term two different methods of establishing “intrinsic” coordinate
systems at points on parametrized curves — either by using T and N or by using u and uy
as a (moving) orthonormal basis. Given a polar curve r = ru, show how to express T in
terms of u and uy. It is then easy to express N in terms of u and uy.

193. The diagram shows the ellipse traced by planet P as it travels around the Sun S. Three
vectors based at P are also shown: the unit vectors u and uy, and the vector r’.

(a) Calculate plausible values for 7, 1/, and ' at the instant when this picture was captured.
Obtain all the numerical data you need by measuring the diagram.

(b) Use these values to draw the vectors r’ at perihelion and aphelion.

P
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194. A 2-meter length of wire is to be bent into the shape /\
of a pentagon, which has an axis of reflective symmetry,

and in which two adjacent angles are right, as shown in
the diagram. The area of such a pentagon is

Az, y) =2y - (1—x—y+%\/rc2—y2),

where x and y are marked in the diagram. Notice that the %

diagram and the equation make sense only for certain x

and y-values.

(a) Describe the domain of A(z,y) as a triangular subset of the xy-plane. Each of the three
sides represents a special case of the allowed configurations. Explain.

(b) Show that the gradient of A is 0 at only one point that is within the triangular domain.
Apply the second-derivative test to show that this point is a local maximum for A.

(c) Find the largest value of A along each of the three sides of its domain. At each such
point, in what direction does the gradient of A point?

(d) Deduce the largest area that can be enclosed using the given 5-sided template.

(e) Consider the surface z = A(z,y). Make a graphical representation of this surface that
incorporates all of the preceding.

195. Extreme values. Given that f is a function that is defined and continuous for all points
in a domain D that is closed and bounded, it can be proved that f attains absolute maximum
and absolute minimum values on D.

(a) The set D of points (z,y) for which 2% + y* < 1 is an example of a set that is bounded
but not closed. Explain the terminology, then find an example of a continuous function f
defined on D that does not attain extreme values on D.

(b) The set D of points (z,y) for which 1 < 2% + 3? is an example of a set that is closed
but not bounded. Explain the terminology, then find an example of a continuous function f
defined on D that does not attain extreme values on D.

Suppose now that f is differentiable. It can be proved that the extreme values of f must
occur at critical points of f, which are the points where the gradient of f is 0, along with
all the points on the boundary of D.

(c) What does this mean if the gradient of f is never 07

(d) Let D be the points of the triangle defined by the simultaneous inequalities 0 < z, 0 < v,
and z +y < 6. What are the extreme values of f(z,y) = zy(6 —x — y) on D?

196. Find the volume of the largest rectangular box that can be inscribed in the ellipsoid
3622 + 9y? + 422 = 36, with the edges of the box being parallel to the coordinate axes.
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197.The diagram shows z = (1 — 2?)siny for the rect-
angular domain defined by —1 <z <land 0 <y <.
This surface and the plane z = 0 enclose a region R. It
is possible to find the volume of R by integration:

(a) Notice first that R can be sliced neatly into sections
by cutting planes that are perpendicular to the y-axis —
one for each value of y between 0 and m, inclusive. The
area A(y) of the slice determined by a specific value of y
can be found using ordinary integration. Calculate it.
(b) Use the slice-area function A(y) to find the volume of R.

(c) Notice also that R can be sliced into sections by cutting planes that are perpendicular to
the x-axis — one for each value of x between —1 and 1. As in (a), use ordinary integration
to find the area B(x) of the slice determined by a specific value of z.

(d) Integrate B(x) to find the volume of R.

) \\\\Q‘\‘\;\\\{\
SIERTIIIANNNY
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198. The preceding problem illustrates how a problem can be solved using double integration.
Justify the terminology (it does not mean that the problem was actually solved twice). Notice
that the example was made especially simple because the limits on the integrals were constant
— the limits on the integral used to find A(y) did not depend on y, nor did the limits on the
integral used to find B(z) depend on z. The method of using cross-sections to find volumes
can be adapted to other situations, however. For example, consider the region R enclosed
by the surface z = xy(6 — x — y) and the plane z = 0 for 0 < z, 0 <y, and z +y < 6. Find
the volume of R.

199.Let V(z,y) = 1 — 2% — y* be interpreted as the speed (cm/sec) of fluid that is flowing
through point (z,y) in a pipe whose cross section is the unit disk z? + y* < 1. Assume that
the flow is the same through every cross-section of the pipe. Notice that the flow is most
rapid at the center of the pipe, and is rather sluggish near the boundary.

The volume of fluid that passes each second through any small cross-sectional box whose
area is AA = AzAy is approximately V(x,y)AzAy, where (x,y) is a representative point
in the small box.

(a) Using an integral with respect to y, combine these approximations to obtain an approx-
imate value for the volume of fluid that flows each second through a strip of width Az that
is parallel to the y-axis. The result will depend on the value of x that represents the position
of this strip.

(b) Use integration with respect to = to show that the volume of fluid that leaves the pipe
(through the cross-section at the end) each second is m/2 ~ 1.57 cc.

200. (Continuation) What is the average speed of the fluid?
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201. Water is flowing through the square pipe whose cross-
section is shown in the diagram. The speed of the flow at
point (z,y) is f(x,y) = 1 — |z| — |y| cm per second. At what
rate, in cc per second, is water flowing through the pipe?

202. (Continuation) Notice that the speeds of individual water
molecules vary from 0 (at the boundary) to 1 (at the center).
What is the average speed of the water as it flows through the
pipe? Explain your choice.

203. Consider the cylinders 22 + 22 = 1 and y? + 22 = 1. Describe their points of intersec-
tion. In particular, how would this configuration of points look to an observer stationed at
(100,0,0)? How about an observer stationed at (0,0, 100)?

204. Consider the region of space that is common to the two solid cylinders 2% + 22 < 1 and
y? + 22 < 1. Use the cross-sectional approach to find its volume.

205. The function f(z,y) = y* + 4y — 2%y is defined for all points in the circular domain
R = {(z,y) | 2* + y* < 9}. What is the range of values of f on R? In particular, what are
the extreme values of f, and where are they attained?

206. Given a point inside the unit circle, the distance to the origin is some number between
0 and 1. What is the average of all these distances? It should also be a number between 0
and 1. Justify your approach.

207. Consider the triangle 7 on the zy-plane formed by points A = (0,0,0), B = (1,0,0),
and C' = (1,1,0). The surface z = ycos (%.%3), along with 7 and the plane y = x, enclose a
region of space. Make a sketch of this region, then use the cross-sectional method to find its
volume. You might notice that it makes a difference whether you begin by slicing the region
perpendicular to the z-axis (the dydx approach) or by slicing perpendicular to the y-axis

(the dx dy approach).

208.The lines (z,y,z) = (=1 +4t,3 —t,7 —t) and (x,y,2) = (1 — 2u, —2 — 4u,20 + 5u)
are skew, which means that they are not parallel and do not intersect. Find the smallest
distance that separates a point on one line from a point on the other line.

209.Given f(z,y), let F(t) = f(0.8t,0.6t). The coeflicients a,, of the Maclaurin expansion
F(t) = ag + ait + ast> + ... can be expressed in terms of f and its partial derivatives f,,
fys fows foy, --.. For example, a; = F'(0) becomes 0.8f,(0,0) + 0.6f,(0,0). Justify this
equation, then write similar expressions for ag, as, and az. Look for patterns.
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210. Suppose that the temperature at point (z,y) of a metal plate is T'(z,y) = 100e”* sin y,
for 0 <z <1and0 <y <m. The temperatures in this plate therefore range between 0 and
100 degrees, inclusive. What is the average of all these temperatures?

211.The paraboloid z = 9 — 2?2 — 9% is cut by the plane
z = 6 — 2z. The intersection curve is an ellipse, most of
which is showing in the diagram. Use double integration to
find the volume of the region that is enclosed by these two
surfaces. In other words, the region is above the plane and
below the paraboloid.

212. The function f(x,y) = 5 is defined and dif-

1+2%2+y
ferentiable at every point in the plane, and the only critical
point of f is a local maximum. The Second-Derivative Test
can be used to check this, but it is not needed. It so happens
that this solitary critical point is actually a global maximum.
Confirm that the preceding statements are true, then pon-
der the question: Is it true that an everywhere-differentiable
function that has only one critical point — that point being
a local maximum — must have a global maximum?

213. Consider the plane z = 5 — 2z — 2y and the points A = (0,0,0), B = (1,0,0), C =
(1,1,0), D = (0,1,0), P = (0,0,5), @ = (1,0,3), R = (1,1,1), and S = (0, 1,3). Notice
that PQRS is a quadrilateral that lies on the plane, and that ABC'D is its projection onto
the zy-plane. Compare the areas of these quadrilaterals. Then choose a different example
of the same sort — a quadrilateral on the plane z = 5 — 2x — 2y and its projection onto the
xry-plane — and compare their areas. Look for a pattern and explain it.

1,1
214. Evaluate the double integral / / coS (y2) dy dx without using a calculator. You need

0
to describe the domain of the integrati(fn in a way that is different from the given description.
This is called reversing the order of integration.

215. Fubini’s Theorem states that

/Cd/abf(x,y)dxdy = /ab/Cdf(w,y)dydw

is true whenever f is a function that is continuous at all points in the rectangle a < z < b
and ¢ <y < d. Despite the intuitive content of this statement, a proof is not easy, and this
will be left for a later course. It suffices to do examples that illustrate its non-trivial content.
Verify the conclusion of the theorem using f(z,y) = zsin(zy) and the rectangle 1 < x < 2
and 0 <y <.
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216. The diagram shows several level curves for the func-
tion f(z,y) = y*> + 4y — 2%y. It also shows the circle
22 +1? = 9, which is tangent in siz places to level curves.
To find the complete range of values of f when it is re- '
stricted to the circular domain z? + y? < 9, you must
examine the value of f(z,y) at each of these six points,
and at each of the three critical points inside the circle.
Explain why.

(a) The gradient of f is [—2zy,2y + 4 — 2%]. How does
this vector relate to the level curves of f?7 How does it

relate to the circle 2% 4 y? = 9? \

(b) The six points of tangency can be found by looking \\\

for points where the gradient of f is parallel to the gra- /
dient of g(z,y) = 2* + y*. Explain this reasoning, and then work on the resulting equation
until you make it look like 3y% + 2y = 5.

(c) To complete the critical-point analysis, you should examine the nine points (—2,0),
(2,0), (0,-2), (0,3), (0,-3), (v/8,1), (—=v8,1), (—/56/3,—5/3), and (v/56/3, —5/3), all of

which are conspicuous in the diagram. Identify each of them.

217. Constraints. The boundary-curve part of the preceding question illustrates how one
uses gradients to find extreme values of a function whose domain has been restricted by
means of another function. The typical problem takes the form “Find the extreme values of
f(z,y), given that g(x,y) = k”, and the method is to look for points where V f is parallel to
Vg. Try out this method on a simple and familiar example: Find dimensions r and h for a
cylindrical can whose volume is 1000 cc (this is the constraint) and whose total surface area
is minimal. In your solution, do not immediately solve for one variable in terms of the other
(the usual approach), but use gradients instead; this treats both variables equally.

218. A constrained minimum: Find the point on the plane 2z + 6y + 3z = 98 that minimizes
the function f(z,y,2) = 2% + y* + 2°.

219. Another constrained minimum: Find the point on the paraboloid z? 4+ y? 4+ 2z = 16 that
is closest to the point (6,9,4). It is convenient to use an auxiliary variable ¢ in the solution
to stand for the multiplier that relates the two gradients. Thus let Vf = tVg, express x, vy,
and z in terms of this Lagrange multiplier, and solve the resulting cubic equation.

220. Verify that the point P = (2,6,3) is on the sphere 2% + y* + 22 = 49. Consider a small
piece S of the spherical surface that includes P, and let R be the projection of S onto the
xy-plane.

(a) Explain why the area of R is approximately 3/7 times the area of S, and why the
approximation gets better and better as the dimensions of § decrease to zero.

(b) By considering the angle between two vectors, explain where the ratio 3/7 comes from.

(c) What would the ratio have been if P = (0,0, 7) had been selected instead?
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221. Explain why the vector [—2z, 2y, 1] is perpendicular to the saddle surface z = z* —y* at
(x,y, z). Consider that part S of the surface that is bounded by —2 <z < 2and -2 <y < 2.

2 2
Explain why the area of S is exactly / / \Aax? + 49?2 + 1dx dy.
—2.J-2

222. Tacking into the wind. The diagram shows how the ve-
locity w of a northerly wind (blowing down the page) is re-
solved into components that describe the effect of the wind
on a sailboat trying to move up the page. The angle made
by the sail and the direction of the boat is 8, the angle made
by the sail and the (northerly) direction from which the wind
comes is ¢, and the angle between the direction of the boat
and the easterly direction is ¥ — in other words, 1) makes
0+ ¢+ = %71’ true.

(a) Let w = wy + wy, where wy is the component of w that
is perpendicular to the sail. Explain why |w;| = |w|sin ¢.
(b) Let w; = ws + wy, where wy is the vector projection
of w; on the direction of the boat. Explain why |ws| =
|w| sin 6 sin ¢.

(c) Let wg = ws + wg, where wy is the vector projection
of wy on the direction of the wind. Explain why |w;| =
|w| sin 0 sin ¢ sin ¢).

(d) Maximize the product sin 6 sin ¢ sin v, subject to the con-
straint 0 + ¢ + ¥ = s7. In other words, tell the boat’s crew
how to maximize thelr rate of progress upwind.

(e) What percentage of the force of the wind is used to propel the boat upwind?

boat axis-\"

223.There are many planes that contain the point P = (2,6,3) and that have positive
intercepts with all three coordinate axes. Any such plane, together with the planes x = 0,
y = 0, and z = 0, defines a triangular pyramid in the first octant. The goal is to find
the plane containing P that minimizes the volume of this pyramid. For example, the plane
2z +y+ 2z = 16 contains P, and the volume it cuts off is 512/3 (not minimal). Notice that
the unknowns of this problem are the coefficients of the equation (not z, y, and z).

r%e¥ — 1 y .
224. Let f(z,y) = a1 1) ye?. The diagram shows
part of the surface z = f(z,y). Show that
(a) f(0,—1) =2/e is a local maximum; I
(b) there are no other critical points for f; and
(c) all numbers are in the range of f(x,y). Hmm. ..
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225. Given that w is the vector projection of u onto v, why is u — w perpendicular to v?

226.Suppose that f and g are differentiable, and that P satisfies the constraint g(P) = k.
How can one tell whether P produces an extreme value of f7 A necessary condition is that
the gradient vectors V f and Vg be parallel. To prove this, let w; be the projection of V f
onto Vg, and let wo = Vf — wy.

(a) If wy is the zero vector, there is nothing more to prove. Explain, then assume that we
is nonzero.

(b) Explain why wy is tangent to the constraint (surface or curve) g = k.

(c) Because f(P) is an extreme value of f constrained by g = k, it is necessary that the
directional derivative Dy, f(P) be zero. Explain.

(d) Recall that Dy, f = woeV f. Thus 0 = wae(w; + Wy). Explain.

(e) Conclude that wy = 0, as desired.

227. Evaluate the integral / / —y 5 dy dz. Then reverse the order of integration and

evaluate again. Explain why you should not be surprised by the result.

228.In setting up a double integral, it is customary to tile the domain of integration using
little rectangles whose areas are AzAy. In some situations, however, it is better to use small
tiles whose areas can be described as rArA#. Sketch such a tile, and explain the formula
for its area. In what situations would such tiles be useful?

229.Suppose that f is a function for which the second-order partial derivative f,, is continu-
ous. Given the four values f(0,0) =m, f(1,0) =n, f(1,1) = p, and f(0,1) = ¢, evaluate the

integral / / 920 dx dy, in terms of the numbers m, n, p, and ¢. Yes, the two notations
oy

for partial derivatives are consistent.

230. Lagrange multipliers. Here is how Lagrange would have found extreme values of f(z,y, z),
subject to the constraint g(x,y, z) = 0: Form the auxiliary function

h(xayazvt) = f(.fl?,y72:) —t- g(l‘,y, Z)

Find all solutions to the four simultaneous equations h, = 0, hy, = 0, h, = 0, and h; = 0.
How does this compare with the gradient-vector approach?

231.Suppose that T'(z,y,2) = 2* + y* + 2* is the temperature at point (z,y, z), and let S
be the spherical surface 2% + y? + 2% = 3.

(a) Describe the isothermal surfaces of T'.

(b) Find all the points on S where T" equals 9. These are points of extreme temperature on
S. Are they relative maxima or minima?

(c) Find all 26 critical points for the temperature function 7" restricted to S.
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232.The diagram shows a few isothermals for the tem- 2
perature function T'(z,y,z) = z* + y* + 2%, restricted
to the sphere 22 + y? + 22 = 3. Explain the symmetrical
arrangement of the six points where the maximal temper-
ature 9 is attained, the eight points where the minimal
temperature 3 is attained, and the twelve saddle points
that all produce the temperature T = 4.5.

i

It is interesting that the isothermal 7" = 4.5 intersects the Yy
sphere in four great circles (all of which can be seen in the

diagram). The twelve saddle points are the intersections

of these great circles. Explain why there can be no more

than twelve intersections of four great circles. ‘

233. (Continuation) At any point (z,y, z), you can calculate the cross product of the vectors
[423, 493, 42°] and [2z,2y,22]. Do so. What is the significance of this vector when (z,y, 2)
is a point of the sphere shown above?

234. Explain why 2 / / 1 5 dx dy equals the surface area of the unit sphere.
v/ 1—y2 \/ -

Explain why this is an improper 1ntegral then describe how to deal with it properly.

235. (Continuation) In problems like the preceding, a different coordinate system works
better. Show how to re-express the problem using polar variables r» and 6 instead of x and
y. This requires that you replace the differential element of area dx dy by something polar,
and that you put new limits on the integrals. Evaluate the resulting double integral. You
should not need your calculator for this version of the question.

1
236. Convert / / x dx dy into polar form. Evaluate both versions of the double integral

and interpret the result.

237.1f a random point were chosen in the square defined by 0 < x <1 and 0 <y < 1, its
distance from the origin would be somewhere between 0 and /2. What is the average of all
these distances?

238. What is the range of values of f(x,y,2) = zyz, if (x,y, 2) is restricted to points of the
unit sphere 22 + 3% + 22 = 1?7
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239.Find the volume of the solid region enclosed by the xy-plane, the cylinders r = 1 and
r = 2, the planes § = 0 and § = 7/2, and the plane z = x + y.

240. Suppose that f is a function of x and y, and that both second-order partial derivatives
fzy and f,, are continuous on a rectangle a <z < b and ¢ <y < d. You have shown that

/ / fyedzdy = F(b,d)+ f(a,c) — f(b.c) — f(a,d)

and

b d
/ / foydyd = f(b.d) + f(a¢) — f(b.c) — f(ad).

/Cd/ab (fyz — fay) drdy = 0.

(b) Suppose that f.,(t,u) < fy(t,u) at some point (t,u). By considering a suitably small
rectangle, derive a contradiction from (a). Draw the conclusion that f,, = f,, whenever
both functions are continuous.

(a) Explain why

241. Discuss the definition

/waowf(x,y)dxdy:C}ggo/oa/oaf(m)dmy.

242, FExplain why

/ / eV dy dy = (/ e d:B) (/ eV’ dy) :
o Jo 0 0

243. Explain why
00 00 /2 0o
/ / e dy dy = / / e~ rdr do.
o Jo 0 0

/ e_‘Bde:\/E.

o0

244. Explain why

First proved by Laplace, this is a significant result for statistical work.
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245. Write v = [6,2,3] as a sum v; + Vo, where vy is parallel to u = [2,1,2], and v is
perpendicular to u. Check your arithmetic.

3 9—z?
246. Reverse the order of integration in / / f(z,y) dy dz. In other words, rewrite the
0o Jo-3

integral using dx dy as the area differential.

247.Let P be the surface 22 + 4y + z = 16, called a paraboloid. Set up a double integral
whose value is the area of that part of P that lies above the plane z = 0. You do not need
to evaluate your integral.

248.Let S be the spherical surface 22 +y? + 22 = 19. The preceding paraboloid P intersects
the sphere S along a differentiable curve that goes through the point B = (3,1,3). Do not
attempt to find an equation for this curve, but do find a vector that is tangent to it at B.

2 T
249. Convert the double integral / / (2% + y?) arctan % dy dx into an equivalent form ex-
1 —x

pressed in terms of polar coordinates r and 6. Do not try to evaluate either integral.

250.Let f(z,y,2) = 22+ 2y + z. Find the range of values of f when (z,y, z) is restricted to
lie on the surface 322 + y? + 222 = 210.

251. For exactly what values of k does the paraboloid 2% +4y?+z = k have points in common
with the sphere 22 + y? + 2% = 197

252.Let p(z,y) = y* + (zy — 1)%

(a) Show that p has exactly one critical point.

(b) Classify the unique critical point.

(c) Show that the values of p include all positive numbers.
(d) Show that p does not have a globally minimal value.
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253. Consider that part of the saddle surface z = 22 —y? that lies above the disk 2% +y? < 6.
Show that its area is a rational multiple of .

- 6—395

254.Let f(0) = 2, and for nonzero values of z, let f(z) = & =

(a) Show that f is differentiable at x = 0.
(b) Evaluate the improper integral fooo f(z)dx. This can be done by the “trick” of creating
an appropriate double integral and reversing the order of integration.

2 pd4—o?
255. Evaluate / / dy dx. Explain why your answer can be considered as an area or
—1J2—x

as a volume.

256.Is it feasible to reverse the order of integration in the preceding?

27 pl4cos@
257. Evaluate / / rdrdf. Explain why your answer can be considered as an area
o Jo

or as a volume.
258.1s it feasible to reverse the order of integration in the preceding?

259.Let R be the triangular region whose vertices are (0,0), (1,0), and (1,v/3). Let

f(z,y) = . Evaluate the integral of f over R.

(14 22 + y?)?
260. Consider that part of the “monkey” saddle z = %x‘g — zy? + 2 that lies above the disk
2? + y? < 3 in the xy-plane. Find its area.

261. What is the average distance from (0,0,1) to an arbitrary point on the unit sphere
2% 4+ y? + 22 = 1?7 The answer is a rational number.

262. The familiar equations © = rcos 6, y = rsinf can be thought of as a mapping from the
rf-plane to the xy-plane. In other words, p(r,0) = (rcos@,rsinf) is a function of the type
R? — R?. Point by point, p transforms regions of the r-plane onto regions of the zy-plane.
In particular, consider the rectangle defined by 2 < r < 2.1 and 1 < 6 < 1.2. What is its
image in the xy-plane?” How do the areas of these two regions compare?

263. (Continuation) The derivative of p at (2, 1), which could be denoted p'(2,1), is a 2 x 2
matrix, and its determinant is an interesting number. Explain these statements. It may help
9(z,y)

(r,0)"

to know that these determinant matrices are usually denoted
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264.Find the smallest volume in the first octant that can be cut off by a plane through the
point P = (2,6, 3).

Method I. The plane can be described by an equation ax + by + cz = 2a + 6b + 3¢, where
a, b, and c are positive. The plane intercepts the z-axis at (2a + 6b + 3c¢)/a, the y-axis at
(2a + 6b + 3¢)/b, and the z-axis at (2a + 6b + 3¢)/c. Thus the volume to be minimized is

(2a + 6b + 3c)?
6abc '

V(a,b,c) =

Begin by calculating the gradient:

(2a + 6b + 3¢
6a2b?c?

2
VV = ) [(4a — 6b — 3c)be, (12b — 2a — 3c)ac, (6¢ — 2a — 6b)ab]

In order for this to be 0, it is necessary that 4a — 6b — 3¢ = 0 and 12b — 2a — 3¢ = 0 and
6¢c — 2a — 6b = 0. The third equation is redundant, and any multiple of a = 3, b = 1, and
¢ = 2 will work. The minimal volume is V'(3,1,2) = 162.

Method II. Let p, ¢, and r be the intercepts of the requested plane with the x, y, and z

axes, respectively. The plane can thus be described by the equation % +Z4 % =1, and

the volume to be minimized is f(p,q,r) = %pqr. Because the plane must contain (2,6, 3),

the constraint g(p,q,r) = % + g + % = 1 applies. The Lagrange method tells you to look for

(p,q,r) that make
Vf= %[qr,pr,pq] a multiple of Vg = [—1% _6 —é] )

Because pgr is nonzero, this implies that

which leads to p = 2t, ¢ = 6t, and r = 3t. Substitute into g(p,q,r) = 1 to find that ¢t = 3.
Thus p =6, ¢ = 18, r = 9, and the minimal volume is f(6,18,9) = 162.

265. Does either of these two approaches actually show that every plane passing through
(2,6,3) cuts off a volume that is at least as large as 1627
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266. Let R be the sector defined by 0 <r <1 and 0 < 6 < . Find coordinates (polar and
Cartesian) for the centroid of R. Your answer will of course depend on . In particular, the
centroid should be at the origin when § = 27, and its r-coordinate should be very close to
2/3 when £ is small. (By the way, the average r-value for any sector is 2/3, but this is not
what the question is asking for.)

267. Consider the linear mapping g : R> —+ R? defined by x = 3u +v and y = u + 2v. In
other words, g(u,v) = (3u+ v, u+ 2v). Point by point, g transforms regions of the uv-plane
onto regions of the zy-plane. Select any uv-rectangle and calculate its g-image (which is
a simple geometric shape). After you compare the area of the image with the area of the

rectangle, calculate the determinant of ¢’(0,0), which is the 2 x 2 matrix B" :;”] )

268. Consider the function f(u,v) = (u* — v*,2uv). Apply it to the rectangle R defined by
1 <u<1l5and 1 <wv < 1.5, Show that the image “quadrilateral” @ is enclosed by four
parabolic arcs. First estimate the area of Q, then calculate it exactly. What is the ratio of
this area to the area of R?

269. (Continuation) Apply f to the rectangle R defined by 1 <u < 1.1 and 1 < v < 1.1
The image Q is enclosed by four parabolic arcs. Make a detailed sketch of Q. Calculate
the matrix f’(1,1), and then find its determinant. You should expect the area of Q to be
approximately 8 times the area of R. Explain why.

270. (Continuation) Apply the function g(h, k) = (2h — 2k, 2h + 2k) to the rectangle defined
by 0 < h <0.1 and 0 < k <0.1. Compare the result with the Q calculated in the preceding

item. Then explain what the matrix B _22} reveals about the mapping f in the vicinity
of (u,v) = (1,1).

271.In general, given a mapping f : R? — R?, its derivative is a 2 x 2 matrix-valued
function that provides a local multiplier at each point of the domain of f. Each such matrix
describes how suitable domain rectangles are transformed into image quadrilaterals, and
its determinant is a multiplier that converts (approximately) the rectangular areas into the
quadrilateral areas. Explain the words “local” and “suitable”, and make use of the limit
concept in your answer. It is customary to refer to either the matrix f’ or its determinant
as the Jacobian of f.

272.Explain why each row of a Jacobian matrix is the gradient of a certain function.

273. Justify the equation O, y) dudv = dx dy.
O0(u,v)
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274.Let R be the rectangular region defined by 0 < u <2 and 1 < v < 2. Let Q be the
region obtained by applying the mapping (z,y) = (u* — v?, 2uv) to R.

(a) Sketch the four-sided region Q.

(b) Find the area of Q.

275.Given a circle of unit radius, find the average distance from a point on the circle to an
arbitrary point inside. (Hint: consider the circle r = 2 cosf).

276.Let S be defined by z = 1 + 22 + 32 for 22 + y? < 9, making S part of a paraboloid.
Find the area of S.

277.The function f(x,y) = (z,y,1 + 2? + y?) maps R? — R3. Write down a matrix that
deserves to be called f'(2,1).

278. What is the area of the parallelogram ABCD whose vertices are A = (2,1,6) and
(a) B =(3,1,10), C = (3,2,12), and D = (2,2,8)?
(b) B=(2+h,1,6+4h),C =(2+h,1+k,6+4h+2k), and D = (2,1 + k,6+ 2k)?

279. Consider the linear function L(u,v) = (2+wu, 1 4+v,6+4u+2v). When L is applied to a
polygonal region R, the result is a planar polygon Q in 3-dimensional space. What number
is obtained when the area of Q is divided by the area of R?

280.Find coordinates (z,y) for the centroid of the region Q of item 1 above.

4/x
281.The appearance of the integral / / TyQQ dy dx suggests that it would be helpful
x

if xy were a single variable. With this in mlnd consider the transformation of coordinates
(z,y) = (u,v/u).

(a) Sketch the given region of integration in the xy-plane.

(b) Show that this region is the image of a square region in the uv-plane.

(c) Evaluate the given integral by making the indicated change of variables.

oo .
The purpose of the next three questions is to evaluate the improper integral / Sl% dx.
0

282. Assume that 0 < z, and show that / ey = %
0

283. Assume that 0 < y, and show that / e sinxdr = o Integration by parts is
0 )

an effective approach.

284.Use an improper double integral to help you deduce the value of / SINT g
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285.1f  and y are nonnegative numbers, then /zry < %(x + y), and equality occurs only if
x = y. This result is called the inequality of the arithmetic and geometric means, or AM-GM
for short. It is a simple workout in algebra.

286.1f =, y, z, and t are nonnegative numbers, then /zyzt < %1(3: +y+ 2z +1), and equality
occurs only if x =y = z = t. This result is another instance of AM-GM. You can prove this
version by applying the preceding result to v/zy and v/zt. Try it.

287.State another instance of AM-GM — one that you can prove — and then prove it. If
there are a lot of variables, you may want to subscript them.

288.1f x, y, and z are nonnegative numbers, then /zyz < %(x +y+ z), and equality occurs
only if z = y = 2. This three-variable version of AM-GM can be proved by appealing to the
four-variable version, by setting t = /zyz. Show how.

289. As an application of the three-variable AM-GM, finish the job of showing that 162 is
the smallest volume in the first octant that can be cut off by a plane through the point

3
P = (2.6,3). Tn other words, show that 162 < 2 2%%: 3)

b, and ¢, with equality only when @ = 3, b = 1, and ¢ = 2. Recall that the equation
azr + by + cz = 2a + 6b + 3¢ describes all the planes that go through P.

for any positive values a,

290. Given a function f that is differentiable at a, the tangent line is distinguished from any

other line y = m(x — a) + f(a) that goes through (a, f(a)) by the following property: Only

if m = f'(a) is it true that the difference between f(z) and m(x — a) + f(a) approaches 0
f(z) —m(z —a) - f(

faster than x approaches a. This means that 0 = lim pe—— 4 Verify the
r—a -

truth of this statement.

291. (Continuation) In this sense, the function L(z) = f(a) + f'(a)(x — a) stands out as

the best linear approximation to f at x = a. This definition of differentiability can be

applied to other functions. For example, f(x,y) is differentiable at (a,b) if there is a linear

function L(z,y) with the property that the difference between L(x,y) and f(x,y) approaches
lim f(x,y)—L(as,y) )

(@y)=(ab) \/(x — a)? + (y — b)?

less cumbersome description of differentiability at p, which in fact applies to examples of

any dimension, is 0 = lim fp+h) - L(p+h)

[hi—0 [

In this view, f’(p) is the matrix for which L(p +h) = f(p) + f'(p)h.

(a) What are the components of matrix f’(p) in the R*> — R! case, in which f means

f(z,y), p means [a,b] and h means [x — a,y — b] ?

(b) What are the components of matrix f'(p) in the R? — R? case, in which f(z,y) is itself

a point of R??

0 faster than (z,y) approaches (a,b), meaning that 0 =

, where h denotes the displacement vector.
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292. Spherical coordinates I. Points on the unit sphere x? 4+ y? 4+ 22 = 1 can be described
parametrically by

r = sin¢cosf
y = sin ¢sin 6

2 = COoS @,

where 0 < 0 < 27 and 0 < ¢ < 7. The angle 6 is the angle usually called longitude, and
the angle ¢ is the complement of the angle usually called latitude. This defines a mapping
f: R? — R3, which “wraps” the rectangle 0 < ¢ < 7 and 0 < # < 27 around the sphere.
The @0 grid is transformed into the familiar latitude-longitude grid on the sphere.

(a) Write the 3 x 2 matrix f'(¢,6).

(b) Explain why the columns of f’(¢,6) are vectors tangent to the sphere at f(¢,0).

(c) Calculate n(¢, ), the cross product of these column vectors.

(d) Show that the length of n(¢, 0) is sin ¢. Use this Jacobian in a double integral to confirm
that the surface area of the unit sphere is indeed 4.

293. Calculate the area of the unit sphere that is found between the parallel planes z = a
and z = b, where —1 < a < b < 1. You should find that your answer depends only on the
separation between the planes, not on the planes themselves.

294.The centroid of the unit sphere is the origin, and the centroid of the unit hemisphere
defined by 0 < z is (0,0, %) Find the centroid of that part of the unit sphere that is found
in the first octant. Because of symmetry, you need only find one coordinate.

295. Spherical coordinates II. By using spheres of varying radius in addition to the angles ¢
and @, every point of xyz-space can be given new coordinates. The coordinate map

f(p,¢,0) = (psingcosh, psinsinb, pcos @)

is obtained by simply inserting p into each of the equations in item 1 above. The symbol p
(the Greek r) stands for y/x? + y? + 22, the distance to the origin. The infinite prism 0 < p
and 0 < ¢ <7 and 0 <60 <27 is mapped by f onto all of xyz-space.

(a) Make calculations that justify the Jacobian formula dz dy dz = p*sin ¢ dp de df.

(b) Make a sketch of a small “spherical brick” whose volume is p?sin ¢ Ap A¢ Af.

296. Interpret the arclength differential

2 2 2
(2= (Y (2
ds¢(dt> () (Y

in terms of local multipliers.
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297.Sketch the first-quadrant region R defined by 225 < 922 + 2592 < 900. Integrate
the function f(z,y) = zy over R. (Hint: Consider the quasi-polar change of variables
(x,y) = (bucost,3usint).)

298. A surface parametrization (x(t, ), y(t,u), z(t,u)), which expresses z, y, and z in terms
of variables t and u, is a mapping of type R?> — R3. Assuming that the coordinate functions
are all differentiable, the Jacobian of this transformation can be calculated by the formula

where each pair of absolute value signs indicate the determinant of a 2 x 2 matrix. Explain
this formula.

299. Describe the location of the centroid of a homogeneous hemispherical solid.
300. Calculate the Jacobian multiplier for the linear mapping (x,y, z) = (¢, u, at + bu + c¢).

301.Consider the region £ enclosed by the ellipse 22 — 22y + 2y* = 25. Show that &£ is
the image of a simpler region in the tu-plane, by means of the linear coordinate change
(x,y) = (3t + u,t + 2u). Find the area of £.

302.1In the Cartesian coordinate system for R3, equations such as ¢ = 3 and z = —2
represent planes. In the spherical coordinate system, what configurations are represented by
the equations p =5, ¢ = 0.7, and 0 = 4.27

303. What portion of the volume of the unit sphere is contained in the cone ¢ < 87 Your
answer will of course depend on [, and should have a predictable value when g = %7‘[‘.

304. Describe the location of the centroid of the solid spherical sector described in the pre-
ceding question. Your answer will of course depend on (3, and should agree with the answer
you found for item 3 above.

a b c
305.Given a 3 x 3 matrix |d e f|, its determinant is, except for sign, the volume of the
g h 1

parallelepiped defined by the three column vectors u = [a, d, g], v = [b, e, h], and w = [c, [, i].
Show that it can be evaluated as a triple scalar product in any of the equivalent forms
ue(v X w), ve(w X u), or we(u x v), all of which equal aei + bfg+ cdh — afh — bdi — ceg.
The determinant is positive if and only if u, v, w form a right-handed coordinate system.

306. Use the preceding to obtain the spherical-coordinate Jacobian p? sin ¢.
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307.Given three vectors u, v, and w in R?, they determine a tetrahedron (a triangular
pyramid). Express the volume of this tetrahedron in terms of u, v, and w.

308.1In terms of the spherical coordinates p, ¢, and 6, describe (a) the zy-plane; (b) the
plane z = 2; (¢) the cylinder z? + y* = 3; (d) the plane = = 4.

309. The cylinder 22 +y? = 25 is cut by the plane 2z + 6y + 32 = 42. The intersection curve
is an ellipse. Find its area.

310.Let f(u,v) = (V2ucosv,v2usinv).
(a) Calculate the matrix f'(u,v).
(b) Show that f is an area-preserving transformation of coordinates.

311.Consider the surface D in R? defined for 0 < ¢ < 27 and 0 < u < 27 by

z = (5+2cosu)cost
y=(5+2cosu)sint

z = 2sinu

(a) Confirm that the point P = (%, %, %) is on this surface, by finding the corresponding
values of ¢ and w.

(b) Find components for two nonzero, nonparallel vectors that are tangent to D at P.

(c) Find the cross product of the vectors you found in (b).

(d) Find the surface area of D.

312. Consider the region S in R? that is enclosed by the cone ¢ < s and the concentric
spheres #2 4+ y? + 22 = a® and 2® + y? + 22 = b?, where a < b. Find the volume of S,
expressed in terms of a, b, and k.

313. (Continuation) Find the z-coordinate of the centroid of the region S. Your answer will
of course depend on the values of a, b, and k.

314. (Continuation) Find the limiting position of the z-coordinate as a — b.

315.Let R be the trapezoidal region of R? whose vertices are (1,0), (3,0), (0,3), and (0,1).
Integrate f(x,y) = e over R.

316. Use spherical coordinates to find the average distance from (0,0, 1) to an arbitrary point
on the unit sphere 22 + 3% + 22 = 1.
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317.Let P = (0,0,a), where 1 < a, and let Q be a point of the unit ball 22 + y? + 22 < 1.
It should be clear that a — 1 < PQ < a + 1. Calculate the average value of 1/PQ, which

1 1
a+1 8mda—l'

therefore should be somewhere between It is an interesting number.

The Newtonian theory of gravitation allows one to work with point masses. In other words,
given a homogeneous mass, the gravitational force it exerts on a remote object can be cal-
culated (using the inverse-square formula) by pretending that all the mass is concentrated
at the centroid of the homogeneous mass. The justification for the special case of a homoge-
nous spherical mass is item 2 below. The corresponding theorem for gravitational potential
is item 1 above.

Let P = (0,0,a), where 1 < a, and let @ be a point of the unit ball 22 + y? 4+ 22 < 1. The
force exerted by a small amount of mass m; at () on a mass my at P is directed toward
Q and its magnitude is Gmom,/PQ?, where G is a gravitational constant. Because of the
spherical symmetry, the net result of all such forces acting on my will be directed toward
the center of the sphere (the other components of the force cancel out). To obtain the only
component of interest, simply multiply the force magnitude by cos«a, where « is the angle
formed by the vectors that point from P to () and from P to the sphere center. Thus the
resulting magnitude can be calculated as

/27r/ G’TTLQCOSOé M p?sin ¢ de dp do
47 /3

where M is the total mass of the spherical object (whose volume is of course 47/3), and
u? = PQ? = a® + p? — 2apcos ¢.

318.Show that the value of the force integral is equal to GMmsya=2. To begin, multiply

numerator and denominator of the integrand by u, and notice that ucosa can be replaced
by a — pcos ¢. Integration by parts works very well here.

The simplicity of the result is remarkable, especially when one realizes that other inviting
possiblities do not work out so neatly.

319. The average value of PQ is not a. Verify that it is a + 5l )
1 1 3 3,9 a+1
320. The average value of PO is not " . Verify that it is 5 4a(a 1)In p

321. At first glance, the preceding answer does not look right! With the help of the Maclaurin

identity
at+1_, 1+(1/a) _ (1) 2(1)3 2(1>5
lna—l In 1—(1/a) 2 a +3 a +5 a .

show that the average value can be rewritten in the reassuring form

1 1(1) 1(1)6 . w#(lf"
S+ 1E + 3¢ - 3;4712—1 o)
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322. Cylindrical coordinates are a self-explanatory extension of polar coordinates to 3-dimensional
space. The coordinate transformation is (z,y,z) = (rcos@,rsinf, z), where 72 = 22 + y%.
Notice the distinction between the polar variable r and the spherical variable p. Use a
determinant to justify the equation dx dy dz = rdr df dz.

323.Let P be the region in R? defined by 0 < z < 4 — 22 — 3%, Use cylindrical coordinates
to find the volume of P. Then find the z-coordinate of the centroid of P.

- ) Y _ . . 3
324.Let F(z,y) = (\/:c + y? , arctan x), restricting your attention to the right half-plane

‘H where 0 < z. Let G(r,0) = (r cos @, rsin ), restricting attention to the semi-infinite strip
S where —3m < 0 < 7 and 0 <r.

(a) What is the relationship between the functions F' and G?

(b) Calculate the 2 x 2 matrices F’ and G'. How are these matrices related?

(c) Calculate the determinant of F’. Could you have predicted the result?

325. The unit disk in R™ is defined to consist of all points whose distance from the origin is
at most 1. It is denoted D". Let d,, be the content of D™. Thus d; = 2, ds = 7, and d3 = %W.

1 3
(a) Explain why dy = / ds (\/ 1-— x2> dx.
1

(b) With the help of the substitution z = cost, show that d, = $7°.
(c) In general, show that d, = dn_l/ (sint)"dt
0

™

(d) Let I,, be the value of the integral / (sint)"dt. It is evident that Iy = 7 and that I; = 2.

0
For 2 < n, use integration by parts to show that I,, = "T_lln_g.

B 1\2m (2m e !
(e) Deduce that Iy, == (5) (m) and that Io,11 = 1 ( m) -

(f) Notice that Iy, lom41 = % and that Iy,,_1lom = 22—777; Use these to help you verify
22m+1m!,ﬂ.m

the formulas dy,, = % and doy1 = 2m+ 1)

326. Derive the corresponding formulas for the content s, of the n-sphere S™. (s = 47)
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327.Find the range of values of f(z,y) = (z* +y*)~! on the curve 92 + 16y* = 3600.

/2 2
328. Evaluate / " sin L dz dy.
—n/2J1 xr

329.1t is customary to describe a curve in R?® by expressing its Cartesian coordinates z, v,
and z as functions of . As you know, the length of a differentiable arc is the value of

b 2 2 2
dx dy dz
— —= — | dt.
VG- (&) (%)
It is also possible to describe a curve in R? by expressing its spherical coordinates p, ¢, and
0 as functions of t. Show that the length of a differentiable arc is

b 2 2 2
/a \/(%) + (psingb%) + (p%) dt.

One way to proceed is to use the Product Rule and a lot of algebra, but it is also possible
to think geometrically and save a lot of work.

330. The cone sin ¢ = 1% is sliced by the plane 4x + 4y + 7z = 112. One of the intersection
points is P = (3,4, 12). The intersection curve is an ellipse. If this cone were cut along the
ray from the origin through P, it could be “unrolled”, thus forming an infinite sector.

(a) What is the angular size of this sector?

(b) The ellipse has one point for each value of the longitude 6, for 0 < 6 < 27, so it should
be possible to express all the other variables in terms of 6. Try it.

(c) What is the range of p-values on the ellipse?

(d) When the cone is “unrolled”, the ellipse becomes a curve that connects two points on
the radial edges of the sector. Explain why this curve cannot be a (straight) segment.

331.Let N = (0,0,1) and @Q be an arbitrary point of the unit disk D?. Find the average of
all lengths NQ, as Q) ranges over D3,

1
\ 2T

332.Show that the function p(t) = e~**/2 has the following two properties:

(a) 1 = /OO p(t) dt

o]

(b) 1= /_OO t2p(t) dt

(e 9]

This is the so-called standard normal distribution of probability.
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333. Consider the cylinder defined by » = 1 and 0 < z < 2 in cylindrical coordinates. Here
is an attempt to confirm the familiar value 47 for the lateral surface area of this cylinder,
by inscribing lots of little polygons (triangles):

(a) Divide the height into m equal parts, using the values z = 0, z = 2/m, z = 4/m,
z = 6/m, etc. At each of these heights, draw the circle on the cylinder that is parallel to the
base circle.

(b) Divide the base circle into n equal parts, using the points § = 0, = 2w /n, 0 = 47/n,
0 = 67 /n, etc. Divide the circle at z = 2/m into n parts as well, but offset the points
a half-step by using 0 = 7/n, § = 27/n + w/n, etc. Use these 2n points to inscribe 2n
congruent isosceles triangles in the thin (height 2/m) cylinder between the two circles; half
of the triangles point upward, and half point downward. Find the area of one of the triangles.
(c) Divide the circle at z = 4/m into n parts, using the same values of # as for the base
circle, then join each of these n new points to the nearest two points on the circle at z = 2/m,
thus creating 2n new triangles that are congruent to those found in step (b). Continuing in
this way, you will inscribe 2mn congruent triangles in the cylinder.

(d) Let m = n?, and write a formula for the combined area of the 2n® inscribed triangles.
Then let n approach infinity. It is of course expected that the sum of the triangle areas will
approach the lateral surface area of the cylinder. To evaluate this limit, it will be convenient
to make use of the two familiar results

. | . 1—cosx
lim ST — q and lim — =

z—0 T z—0 T

N[ —

Is the answer what you expected?

b 2 2 2
334. Express the arc length integral / \/ (é—f) + <%) + (fl—'tz) dt in terms of the cylin-

drical variables r, 6, and z.
335. Stereographic projection. The transformation
2 2w _Phu—]
2+u+1 2+u+1 7 24+u+1

maps R? onto a surface S in R3.

(a) Show that circles centered at the origin in R? are mapped to circles on S.

(b) One of the points on S is P = (2,4, 2), which is the image of t = 2 and v = 1. Find
two vectors that are tangent to S at P.

336. Consider that part of the unit sphere p = 1 that lies inside the circular cylinder r» = cos 6
and above the plane z = 0. Find the area of this surface.
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337. Consider the interesting function

%y

1 2
Fla,y) =" 1Y
0, otherwise.

if 0 < 22+ 9y?;

(a) Show that f,(0,0) and f,(0,0) are both zero.

(b) Calculate fy(0,0) for a general unit vector u = ai + bj.
(c) Conclude that f is not differentiable at (0, 0).

(d) Show that f is discontinuous at (0,0).

338. Consider that part of the unit 3-ball p < 1 that lies inside the circular cylinder r = cos 6
and above the plane z = 0. Find the volume of this region.

339.Finding the point on the sphere 2% + y? + 22 = 225 that is farthest from P = (9,12, 20)
can be done by simple geometry. Do so. Then describe the problem in terms of maximizing
a function f(z,y, z) subject to a constraint g(z,y,z) = 225. Give a detailed description of
how the level surfaces of f intersect the constraining surface S, thus producing level curves

of fonS.

340.Let P be the paraboloid 3z = 22 + y?, and f(z,y,2) = (z — 1)+ (y — 0)? + (2 — 4)%
When (z,y, z) is constrained to lie on P, f has two local extrema and a saddle point. Find
coordinates for these three points, and describe the configuration of curves on P that result
from intersecting P with level surfaces f(x,y,z) = k.

341.1f gazillions of points were randomly selected from the unit 3-ball p < 1, what would
the average of their p-values be?

342. The semicircular sector defined by 22 + y? < 36 and 0 < y can be rolled up to form a
cone, which can be placed so that its vertex is at the origin and its axis of symmetry is the
positive z-axis. In the process, the segment that joins (0,6) to (6,0) is transformed into a
curve C on the cone.
(a) Describe the cone using spherical coordinates.
(b) Is C a planar curve? Give your reasons.

dy dzx

343. Carefully interpreted, it is true that pribr 1. Explain.
T ay

O(x,y) Ouv)
O(u,v) O(z,y)

ou  dz
oxr Ou

344. Carefully interpreted, it is true that = 1. Explain.

345. Give an example that shows that = 11is not true.
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3 19
346. Evaluate / / ye_w2 dx dy.
0 Jy?

347. The region R is bounded by the planes z = 0 and z = 2y and by the parabolic cylinder
2% 4+ y = 4. Find the z-coordinate of the centroid of R.

348. Restrict your attention to points on the sphere z? + y? + 22 = 2 in the first octant
(where z, y, and z are all positive).

(a) Find the maximum value of f(z,y,2) = 21y°23°.

(b) Find spherical coordinates p, ¢, and 6 for the point where f attains its maximal value.

349. The heat equation (also known as the diffusion equation) is a partial differential equation
that describes how temperatures vary with respect to position and with respect to time. In
two dimensions, it is , )
or _ o0°T | 0°T
“or o T oy
where T' = T'(z,y,t) is the temperature at position (z,y) and at time ¢, and where k is
a constant that depends on the physical attributes of the material (thermal conductivity,
for example). Of special interest is the steady-state equation 0 = T, + T, (also known as
Laplace’s equation), obtained by setting the time derivative to zero.
(a) If T'(z,y) is a steady-state temperature distribution, then every point on the graph of
the equation z = T'(z,y) is a saddle point. Explain this remark.
(b) If m is a constant, then any function of the form T'(z,y) = e™"* sinmy is a solution to
the steady-state equation. Verify that this is true.
N

(c) Let T'(z,y) = che’”x sinny where each ¢, is constant. Verify that T describes a
n=1

steady-state temperature distribution.

350.Find the area of the surface z = xy that is contained inside the cylinder z2 + y? = 8.

351. The diagram shows the region & bounded by the spi-
ral rf = 1, the circle r = 1, the positive x-axis, and the
circle r = 2.

(a) Find coordinates = and y for the point A where the
spiral intersects the circle r = 2.

(b) Find the area of S. s

August 2019 51 Phillips Exeter Academy



Mathematics 6

352. Consider the transformations R?> — R? defined by

F(u,v) = (u+u* = 2uv +v*, v+ u* — 2uv + v*)
G(z,y) = (v —2* +2zy —y°, y — 2 + 22y — y°)
Show that each transformation is
(a) area-preserving;

(b) one-to-one — this means that different points have different images;
(c) onto R* — this means that the range is all of R?.

353. (Continuation) Calculate both compositions F' o G and G o F.

u+vvV3 v—uv3
2 ’ 2

354. Show that the linear transformation (x,y) = ( ) is area-preserving.
355. What condition on the coefficients a, b, ¢, k, m, and n ensures that the generic linear
transformation (z,y) = (a + bu + cv, k + mu + nv) is area-preserving?

356. As you have seen, the nonlinear transformation (z,y) = (u* — v?, 2uv) distorts regions
and alters their areas. It does have a special property, however; at every point except the
origin, this transformation is conformal, which means that it preserves the sizes of angles.
(a) Find an example to illustrate this statement.

(b) Prove the general assertion.

357. Consider the linear transformation (z,y) = (3u+ v, u+ 2v), which transforms the circle
u? 4+ v? = 2u + 2v into the ellipse 2% — 22y + 2y? — 20 — 4y = 0. The circle circumscribes
the square whose vertices are (0,0), (2,0), (2,2), and (0,2); the ellipse circumscribes the
parallelogram whose vertices are (0,0), (6,2), (8,6), and (2,4).

(a) Is (8,6) a vertex of the ellipse?

(b) The image of the center of the circle is (4, 3). Is this the center of the ellipse?

358. Consider the surface S in R? defined by revolving an arc y = f(z) for a < x < b around
the z-axis. Assume that f is a differentiable function and that f’ is continuous.

(a) Show that S can be parametrized by (x,y, z) = (¢, f(t) cosu, f(t) sinw).

(b) Calculate the Jacobian for this parametrization.

(c) Set up an integral with respect to ¢ and u for the area of S.

359.Show that any transformation of the form (z,y) = (v + f(u —v),v + f(u — v)) is
area-preserving, assuming that f is a differentiable real-valued function of a real variable.

360. Consider the figure-eight curve obtained by intersecting the unit sphere p = 1 and the
cylinder r = cosf. Find a parametrization for the entire curve.
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361. More fun with iterated integmls Evaluate the following:

(a) / / 2aye™ drdy  (b) / / sin (2%) dedy  (c) / xln_xf“’ dx

(n+1)mw .
362. For each nonnegative integer n, let a,, = / zl\r;f dx.

(a) Show that |a,| decreases monotonically to 0.
(b) Conclude that the series Y~ @, is convergent. Using advanced methods, it can be

shown that the sum is y/7/8.

363. (Continuation) Evaluate the improper integral / sin (t2) dt.

364. (Continuation) Show that = = lim / / sin (2 + y?) dady.

m—o0

/2

365.Show that lim / sin (7’2) rdrdf does not exist.
m—0o0 0

366. The preceding two questions show that it is difficult to define convergence of improper

multivariable integrals when the integrand is not of constant sign. Explain.

dxdy has a meaningful value, it is clear that

x? —y°
367.1If the improper integral / / —yz)

the value should be 0. When this expression is evaluated as an iterated integral, however, a
nonzero value is obtained! Verify.

368.Let R be the region (x — 1) + 3? < 1. Evaluate // cos ! <L> dzdy .
R

Va?+y?
1 p1
369. The integral//
o Jo 1

—1xy dzdy is improper but convergent. With the help of a geo-
metric series, show that the value of the integral is Y >~ n

-2
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370.Given a rectangle R, let R be the boundary of R, considered as a piecewise differen-
tiable path, parametrized in a counter-clockwise direction. Let P and () be functions that
are differentiable on R. Show that the line integral |, or P dr + Qdy has the same value as

the integral / / <@ — 8_P) dx dy. This is an example of Green’s Theorem.

371. (Continuation) Show the result remains true if R is any type I region, which means that
R is defined by inequalities a < z < b and f(z) <y < g(z), where f and g have continuous
derivatives. Hint: Consider the special cases P =0 and ) = 0 first.

372.State and prove Green’s Theorem for type II regions.
373.When P(z,y) = —%y and Q(x,y) = %x, Green’s Theorem is interesting. Explain.

374.Let S be the region consisting of those points (z,y) for which 1 < 2? + y? < 9 is true,
but for which 0 < x and y < 0 are not both true. Is region S covered by our treatment
of Green’s Theorem? Does the conclusion of the theorem hold for the example defined by
P(z,y) = 2xy and Q(z,y) = 22 + 227

375. (Continuation) Using the familiar polar-coordinate mapping, show that S is the image
of a rectangular region R in rf-space.

376. Without evaluating them, show that [ [,  ._,(2xcos(z® +y?) + 2ysin(z® + y?)) dz dy
and |

4 cos(z? + y?) dx + sin(z? + y?) dy have the same value.

The next question is made more difficult by an unfortunate notational practice: The letter
P is used to name a function of x and y, but then P is also used to name the function that
results from P by replacing all occurrences of  and y by chosen functions of r and 6.

377. Applying a change of variables x = z(r,#) and y = y(r, §) to an rf-rectangle R produces
aregion S in xy-space. This allows you to perform a substitution on each of the two integrals
that appear in the statement of Green’s Theorem for S.

(a) Explain why //S(Qgg — P))drdy = //R(Qx — P,))(z,yg — zoy,) dr db.

(b)Explainwhy/ de+Qdy:/ (P -z, + Q- y.)dr+ (P-xg+ Q- yp)dl. It will be

as OR
necessary to apply the Chain Rule to dz/dt and to dy/dt.

(c) Calculate % (P-z9g+Q -yp), thinking of P(z(r,0),y(r,0)) and Q(x(r,8),y(r,0)) as

functions of r and 6.
(d) In a similar fashion, calculate g 7 (P2, +Q-yr).

(e) By comparing your answers to the previous four parts, conclude that Green’s Theorem
holds for the transformed region S.
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378. Given continuous functions P and (), and a continuously differentiable path C, the line
integral fc Pdx + @ dy is defined. Notice that the integrand is a dot product:

_(pdr L 0% 4 = dr dy
Pd:v—l—Qdy—(Pdt+th)dt—[P,Q]-[dt,dt]dt

This construction has many applications, especially in physics. When C is a closed path, this
integral is sometimes called the circulation of the vector field [P, Q] around C. A positive
value indicates a tendency for the vector field to point in the same direction as the motion
along the path. Explain.

379. Green’s Theorem is valid for the region £ shown at right. Explain why.
Hint: Notice that £ can be expressed as a union of rectangles, any two of
which have at most a single segment in common.

around the piecewise

380. Find the circulation of the vector field |0, 52
x
linear path that goes from (2,0) to (2,1) to (1,1) to (1,0) to (2,0).

381. Suppose that @), = P, throughout a region R. What deductions can you make?

382.Given a parametrized surface S in R?, and three real functions M, N, and P defined
on 8, the expression |, sMdydz+ Ndzdx+ Pdxdy is called a surface integral. The surface
parametrization (x(t,u),y(t,u), z(t,u)) maps some tu-rectangle R onto S, and the integral

is thus evaluated
Iy, 2) ANz,z) | ,0(z,9)
M N P
/ /R( ot " Mo T o ) M

where M = M(x(t,u),y(t,u), z(t,u)) is viewed as a function of ¢ and u, and 9(y, z)/0(t, u)
is the determinant of a 2 x 2 array of partial derivatives.

For example, let S be the upper half of the unit sphere — those points in R? that satisfy
2?2+ 9?4+ 22 =1 and 0 < 2. Calculate
(a) [ wdydz+ydzde + zdxdy (b) [¢ 2*dydz +y* dzdx + 2* dx dy

383. (Continuation) In general, the integrand is the projection of v = [M, N, P| onto a unit
vector ng that is normal to S. Explain. In applications, | sMdydz+ Ndzdr + Pdrdy is
often called the fluz of v through the surface S, and it can be written simply | s Vens.

384.Let A be a plane region, whose area is a, and let ai, as, and as be the areas of the
regions obtained by projecting A onto the planes z = 0, y = 0, and z = 0, respectively.
Prove that a® = a? + a3 + a3.

385. Calculate the flux of the vector field [x,y, z] through the triangular surface whose ver-
tices are (a,0,0), (0,b,0), and (0,0, ¢), assuming that a, b, and ¢ are all positive.
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386. Given a cube C, let dC be the boundary of C, considered as a piecewise differentiable
surface (there are six sections). It is assumed that the parametrizations for each section are
chosen so that the normal vectors all point outwards. Let [M, N, P] be a vector field that is
defined continuously throughout C. Show that the flux integral

Mdydz+ N dzdx + Pdxdy
ac

has the same value as the integral

///(a—M+a—N+%> d dy d= .

This is an example of the Divergence Theorem, also known as Gauss’s Theorem.

387.Let R be a region in R?, for which OR is a piecewise differentiable surface (which may
have several sections). Let v be a continuously differentiable vector field defined throughout
R. The Divergence Theorem states that

/Vov:/ v
R R

where V is the familiar “differential operator” defined (for R?) by

(9.9 9| _;0 ;0 40
V—[ax’ay’az} 10z Tioy T Xoz

and usually read “del.” Use this theorem to help you calculate the flux of the field [522, 4y, 3]
through the unit sphere S, using an outward-pointing normal for S.

388. Consider the vector fields v = [xz — zy,yx —yz,zy — zx] and w = [y + 2z, 2 + z, . + 1],
and let T be the triangular surface determined by the points (6,0,0), (0,3,0), and (0,0, 2).
Both of the following questions have the same answer.

(a) Calculate the circulation of v around the piecewise linear path 97.

(b) Calculate the flux of w through the surface 7, which has normal vector [1, 2, 3].

389. Given a differentiable vector field v = [P, Q, R] defined in R?, define

_ _ |9 _0Q 9P 0R 0Q 0P
curl(v)_va_{ay 0z’ 0z Ox’ dx Oy

Let S be a surface and OS be its (oriented) boundary. Stokes’s Theorem states that

/V_/ VXV QHS
oS

That is, the circulation of v around 0§ is equal to the flux of curl(v) through S. Explain
how Green’s Theorem is a special case of this theorem.

390. For any field v or function f defined on R?, show that Ve(Vxv) =0and Vx(Vf) = 0.
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391.Given a bounded region R in R3, whose boundary OR consists of surfaces that are
differentiable, the volume of R is equal to the flux of the field [%:1:, %y, %z] across OR, assuming
that each boundary component has an outward-pointing normal. Explain, and provide an
illustration.

392. (Continuation) Find another field that has the same property as does [5z, 3y, 52].

393. Consider the vector field v, defined throughout R? by
v = 2oy — y, 2% + = — y?]. The diagram at right shows
the streamlines of this field, rather than the vectors them-
selves. (In effect, the field vectors are interpreted as instan-
taneous velocity vectors, and the streamlines represent the
solution trajectories for the resulting differential equation.)
(a) The diagram shows that the field v has four critical
points, where v = 0. Find these points.

(b) Show that this field has zero divergence (which means
that it has no sources or sinks).

(c) Using an outward-pointing normal, calculate the flux
of v across the circle 22 + y? = 2.

(d) Put arrows on the trajectories, to show the directions of the field vectors.

(e) Calculate the circulation of v around the positively directed circle 22 + y? = 2.

I\

394. The Fundamental Theorem of Calculus. You have recently read several theorems that

all take the form
/ dw = / w
c ac

in which the domain of integration (either C or dC) is abstractly referred to as a chain, and
the integrand (either dw or w) is called a differential form. In all cases, the degree of the form
matches the dimension of the chain. For examples: a 1-form such as P dz+ Q) dy+ R dz must
be integrated over a 1-chain that is a differentable path (or a collection thereof); and 2-forms
such as M dy dz+ N dz dx+ P dz dy or (Q, — P,)dx dy must be integrated over a 2-chain that
is a differentiable surface (or a collection thereof). The two integrals in the statement are
linked by two linear operators: 0 builds a chain from C by extracting the boundary of each
piece of C (which lowers the chain dimension by 1); d converts a k-form into a (k + 1)-form,
as specified by the Chain Rule (dM = M,dx+ M,dy+ - - -) and skew-symmetry (that means
dy dx = —dx dy; notice that it also implies dzdz = 0).

~—

For example, consider Green’s Theorem, and let w = P dx + () dy. Here is how d works:

~—~

dw =d(Pdx+ Qdy) = (Pydr + P, dy) dx + (Q, dx + Q, dy) dy
=P, drdx + P,dyde + Q. dvdy + Q,dydy = (Q, — P,) dz dy

Write similar explanations for the Divergence Theorem and Stokes’s Theorem.
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395.1n its classic form, the Fundamental Theorem of Calculus deals with a O-form w = f (a
function) and a 1-chain C, which is a (directed) interval. Provide the remaining details.

A chain that arises from applying the operator 0 is called a boundary. A chain C for which
JC = 0 is called a cycle. It is fundamental that all boundaries are cycles, which means
0(0C) = 0. This is a consequence of orientation — every element of a chain is stamped
with an orientation, made possible by its parametrization, and these orientations must be
carefully managed during the formation of a boundary.

For example, consider the solid cube C in R?; it becomes an oriented 3-chain by stamping it
with the right-hand rule (familiar from the definition of k = ixj). The boundary 2-chain 9C
consists of six terms, each of which must also be stamped with an orientation (either clockwise
or counterclockwise) that is derived from the cube orientation. The standard way of doing
this is to stipulate that, for any face, the cube orientation matches the orientation that results
from appending the outward-pointing normal vector to the designated face orientation; there
is only one way to do this.

In the same way, the orientation on a 2-cell (a square face, for example) imposes an orienta-
tion (a direction) on each of the 1-cells that form its boundary.

It follows that the computation of 9(9C) leads one to consider 24 = 6 - 4 oriented segments
(1-cells). It is intuitively clear that, if the preceding rules are followed exactly, each of the
twelve edges of the cube will appear twice in this calculation, once with each of the two

possible orientations. By convention, the two contributions of each edge are said to cancel,
which is what 9(9C) = 0 means.

396. Consider the tetrahedral region 7 in R3, whose vertices are (0,0,0), (1,0,0), (0,1,0),
and (0,0, 1). It is clear that 7 has four terms. Suppose that they have been parametrized
(and thus oriented) as follows, using nonnegative parameters ¢t and u that satisfy ¢t + u < 1:

S (x,y,2) = (t,u,0)
Sy ¢ (z,y,2) = (0,t,u)
S ¢ (z,y,2) = (t,0,u)
Sy ¢ (z,y,2) = (tu, 1 —t —u)

Assuming that T carries the right-handed orientation, express 07 as a sum of four terms,
using +1 as coefficients to make 9(9C) = 0 true.

397. A differential form that arises from applying the operator d is called ezact. A form w for
which dw = 0 is called closed. 1t is fundamental that all exact forms are closed, which means
d(dw) = 0. This is a consequence of the sign-sensitivity that defines d, and of properties of
derivatives. Verify d(dw) = 0 for the 1-form w = Pdz + Qdy + Rdz in R3.

398. A natural question: if a 1-form is closed in a region R, must it be exact? You have seen
that the answer can be locally “yes”, but globally “no.” Explain, and provide an example.
Hint: You are looking for a function with a prescribed gradient.
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399. Consider the unit cube C in R?, defined by the simultaneous inequalities 0 < x < 1,
0<y<1l and 0 <z <1, and let S = 9C be its boundary surface. For any point P on S,
let f(P) be the distance — measured along S — from O = (0,0,0) to P.

(a) Consider the corners C; = (1,0,0), Cy = (1,0,1), C3 = (1,1,1), and C; = (1,1,0).
Show that f(C1) =1, f(Cy) = V2, f(Cs) =5, and f(Cy) = V2.

(b) Show that the level curve f(P) = 0.6 is piecewise circular — composed of three quarter-
circles that are joined continuously at their endpoints.

(c) Show that the level curve f(P) = 1 is also piecewise circular.

(d) Let @ = (0.2,0.5,1.0) and R = (0.5,0.2,1.0). Show that f(Q) = 1.3 = f(R). Show that
the level curve f(P) = 1.3 is piecewise circular. How many pieces are there?

(e) What is the range of values of f7

(f) Show that f, when restricted to the face where z = 1, is a piecewise differentiable
function, by writing a recipe for calculating f(z,y,1).

400. Consider the rectangular box B in R?, defined by the three simultaneous inequalities
0<xr<2,0<y<I1l,and 0 <z <1, and let S = 0B be its boundary surface. For any
point P on S, let f(P) be the distance — measured along S — from O = (0,0,0) to P.

(a) Consider the corners C; = (2,0,0), Cy = (2,0,1), C3 = (2,1,1), and Cy = (2,1,0).
Show that f(C) =2, f(Cy) = V5, f(Cs) = /8, and f(Cy) =+/5.

(b) Let
0= (B0 k) - (8.2.0), 1 (B0 BT v (i)

Show that £(Q) = f(R) = f(T) = f(U) =2

(c) Show that the level curve f(P) = 2 is piecewise circular. How many pieces are there?
(d) Show that f, when restricted to the face where z = 1, is a piecewise differentiable
function, by writing a recipe for calculating f(z,y,1).

401. (Continuation) Let M = (2,31/39,21/26). Calculate f(M). You will have to consider
four piecewise linear paths from O to M. One of them is shorter than the other three.

402. (Continuation) Let Sy be the square face of 0B on which = 2. Show that Sy can be
partitioned into four triangular regions, on each of which f is differentiable. In other words,
find the four formulas for f(2,y, z), and describe the domain of each.

403. (Continuation) Show that f(E) = 11/130, for a unique point £ = (2,y,z) on S,. This
is the maximal value of f.

404. (Continuation) Describe the appearance of the level curves of f restricted to S,.
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405. Consider the rectangular box B in R?, defined by the three simultaneous inequalities
0<z<5/3,0<y<1,and 0 <z <1, and let S = I8 be its boundary surface. For any
point P on S, let f(P) be the distance (measured along S) from O = (0,0,0) to P. Verify
that f(C3) = 3v/61, where C3 = (5/3,1,1).

406. (Continuation) Let Sy be the square face of OB on which x = 5/3. Show that S, can be
partitioned into four triangular regions, on each of which f is differentiable. In other words,
find the four formulas for f(5/3,y, z), and describe the domain of each.

407. (Continuation) Calculate f(FE), where F = (% 4 %)

) g ) :
408. (Continuation) Calculate f(S), where S = (% : % ) % )

409. (Continuation) Show that f(C5) and f(F) are locally maximal.

410. (Continuation) Show that f is not differentiable at any point on the diagonal y = z of
square face Ss.

411. (Continuation) In spite of this result, make a case for S being a saddle point for f.

412. (Continuation) Describe the appearance of the level curves of f restricted to Ss.
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Inverse Square Law Orbits

413.0ne of the following equations can be solved for u. Find the equation, then find at
least two different solutions for it:
(a) [3,1, 2] xu=[2,—1,2] (b) [3,1,-2] xu=11,1,2] (c) [3,1,—2]xu=[3,1,-2]

414. The vectors

u = [cos 6, sin b

uyg = [—siné, cos 6]
Ao _ 1 osp, —si
70 = [—cosf, —sin 0]

are useful when using polar coordinates to analyze plane curves. In the context of vector

dynamics (for example, Kepler’s Laws), the notation uy’ means the derivative, with respect
dUQ

to t, of the unit vector uy. It could be written less ambiguously as 7

. Express this vector

in terms of u.

415. Given a path r = ru, where r is the radial vector from the origin in the zy-plane, you

have calculated
v _ (dPr _ dodf d*0 | odrdf
"o (dt2 "dt dt) ur <Tdt2 T2 dt) 1o

by using the Product Rule and the Chain Rule. In order for r to be governed by a central
force, it is therefore necessary that the coefficient of uy be zero:

_d*0 | odrdf
O=rie *2atat

If v is produced by a central force, this should be guaranteed by the area-sweeping fact
r20’ = h derived earlier. Verify that it is.

416. (Continuation) Suppose that the inverse-square law r” = —% u applies. Derive the
T

2
equation 1’ = h 3 gr by comparing coefficients of u.
r

417. (Continuation) This second-order differential equation describes r implicitly as a func-
tion of ¢. This is a difficult equation to solve. First, a couple of easy steps:

(a) There is one solution r(t) = 1, where ry is constant. Find the constant, and then find
a corresponding angular function 6(¢).

(b) Because r” is expressed in terms of r, it is reasonable to expect that 7’ should also be

2
expressible in terms of r. Show that any r that satisfies (1')* = 279 +C — h—2, where C'is a
T

constant, will also satisfy the equation for r”.
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9

418. Under the influence of an inverse-square law r” = —-% u, the position of an object fits

29

2
an equation (r')* + h—2 + C, where C' is a constant. (If you know physics, you should
T

verify that C' is proportlonal to the total energy of the object.) If the constant C' happens
to be negative, then the values of r are bounded — that is, they cannot become arbitrarily
large. Explain why. In fact, show that r must always be smaller than —2¢/C. This estimate
will soon be improved.

419. The differential equation can be written as r?(r')? = 2gr+Cr?—h?. If the constant C'is
negative, the resulting elliptical orbit has a minimal value and a maximal value for r, which
occur at the vertices of the ellipse. At either point, v’ is zero. Why? Use this information
to show that the minimal value of r (at perihelion) is

-9+ g*+ Ch?
C

and the maximal value of r (at aphelion) is

—q — /92 +C’h2
C

This formula for r; improves an earlier estimate. How? (Remember that C' is negative.)

To =

r =

420.1t should be clear that 2gr + Cr? — h? = 0 when r = ry and when r = r;. What are the
g+ Cr

Vo + O

421. Temporarily write the negative value of C' as —k?, where k is positive. Verify that the
differential equation can be rewritten equivalently as r ( )2 = 2gr —k*r?—h?. Now complete
the square to obtain the version

values of when r = rg and when r = r;? They will be useful below.

7“2<7“,)2

= 1.

422. Assume now that 7’ is nonnegative (the planet is receding from the Sun). Show how
the differential equation can be rewritten as

<kr— E) kr' + gr'

\/——h2 kr—%>2

423.How would the preceding equation have looked if we had assumed that v < 07

=k
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424. Assuming that 0 < 1/, antidifferentiate both sides of the differential equation to obtain

9P 9\2, 9 kr_% 2
_\/F—h—<k”f’—g> —l—ESlH 92— :k(t—to),
w2

in which ¢y serves as the antidifferentiation constant (its value will be chosen soon). Now
restore C' to obtain the equation

. + Cr
—\/2g7 + Cr2 — h2 — I gin ! | L2L = —C(t —ty),
v-=C Vg% + Ch?
which implicitly defines r as a function of ¢. It is clear that there is no chance of solving
explicitly for r in terms of ¢t. It is also clear that this equation does not completely describe
the periodic nature of the orbit, because the equation is valid only for a restricted time
interval. The rearrangement

sin (—”_C V2gr + Cr2 — h? — C—"_C(t—tg)> +LC7’ =0
g g vV g? + Ch?

is better, but it does not correctly describe the half of the orbit where ' < 0.

425.1t is convenient to adopt w as an abbreviation for — Notice that inserting

(w(t —tp)) = —1. Conclude

, if ¢¢ is chosen to be 2~ .
2w

Q
S

|

i

r = rg into the preceding equation reduces the equation to si
that the planet passes perihelion at ¢ = 0 and aphelion at ¢ =

=

SEE

426. Using this choice for tj, show that

g+Cr

NS

cos (wt — < \/2gr + Cr2 — h2 ) =
( oV )

describes the planet’s orbit for 0 <t < g )

427. By modifying the preceding in the case ' < 0, show that

+Cr
coS (wt+ Y /2gr + Cr? —h2> — 9T
C \/ g%+ Ch?
describes the planet’s orbit for g <t< %T

428. By combining the two preceding cases, you can show that the equation

o (i () - VIO -

2 Vg +Ch?

describes the planet’s orbit for all values of t.
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429.Once r is known as a function of ¢, the ellipse equation provides a quick way to obtain ¢
as a function of t. Because 7 is known only implicitly, however, finding an explicit formula for
0 seems to be out of the question as well. Show that 6 is defined implicitly by the equation
h? — gr

T\/m

430. Because C' is negative, you might be wondering whether the constant /g% + Ch? is
well-defined. Show that it is equal to rovs — g, where vy is the speed at perihelion.

cosf = , assuming that the planet passes perihelion at ¢t = 0.

431.You are perhaps wondering whether \/ 2gr + Cr? — h? is well-defined, given that the
positive term 2¢gr is diminished by two negative terms. First show that

V2gr + Cr? — h? = \/297“ <1 - rL) + (r2 —rd)vd.
0
Because rq < r, you are dealing with a sum of two terms, one of which is never positive,
the other of which is never negative. Because r < 7, the sum is nonnegative. Prove these
remarks.

432.1t is intuitively clear that an orbit is completely determined by the two numbers rg
(minimial radius) and vy = rof, (maximal speed) at perihelion. Except for g (the only true
constant), the values of other “constants” are determined by ry and vy. It should therefore
be possible to express each of them in terms of ry and vy. Confirm each of the following
formulas:

(h) The “sweeping” constant h equals ruvy.

(c) The “energy” constant C' equals v3 — i—‘g :

2
(m) The eccentricity m equals % _q.

(d) The mean distance D to the Sun equals Tod 5 -
29 — rovj

3/2

(t) The period T equals 27g (T—02) .
29 — rov;
rava
(r) The maximal radius r; equals —>%— .
29 — rovg

433.The type of orbit depends on the numerical data ry and vy at perihelion. Use the
formula for eccentricity to explain why

(a) the orbit is a circle if g = rgvd;

(b) the orbit is an ellipse if g < rovd < 2g;

(c) the orbit is a parabola if 29 = rov3 ;

(d) the orbit is a hyperbola if 2¢g < rovg ;

(e) the case 0 < rov3 < g must be excluded from this summary.
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434.1t is intuitively clear that an orbit is determined by the two numbers C' and h. You
have already shown that ry and r; — the extreme values of r for an elliptical orbit — can
be expressed in terms of C' and h (and g). Show also that

g+g*+Ch*
h Y

(d) the mean distance D equals — 4.

C
(t) the period T equals 2mg(—C)~%/?;

g

(v) the maximal speed v, equals

(m) the eccentricity m equals

435.The diagram shows the graph of r(t) that corresponds to the data g = 1, C' = —0.25,
and h = 1.84, with perihelion occurring at ¢ = 0. Use these numbers to calculate the mean
distance D, the period T, and the extreme radial values ry and r;. Use the graph to check
your answers. Also calculate the eccentricity of the elliptical orbit.

r

10

436. Use the data for the graph above to calculate the extreme values vg and vy of the orbital
speed. Explain how the graph above reinforces the result that v, is significantly smaller than
Vo-

437. The graph also should make it clear that D — the so-called “mean distance” — is not
the average value of r with respect to time. Use the graph to estimate the value of this
average. You will soon be able to calculate it exactly.
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438.The above formula expresses r as a function of the polar angle 6. According to this
description, the average value of the focal radius r is

27 27 9
f:L/rwzi/—4L—w
27 J, 27 J, a+ccosl

It is not a trivial exercise to evaluate this integral by finding an antiderivative, but it can be
done. It is also interesting to see what your calculator can come up with. Whatever your
method, find evidence that 7 = b. Remember that a® = b? + 2.

439.1t is known that planets move around their elliptical orbits (which have the sun at one
focus) with nonconstant speed, going more slowly when they are farthest from the sun. In

fact, Kepler’s Third Law says that
o _ h
dt  r?’

where h is a constant and t is time. This enables us to express the length of the planetary

year as
27 2

T:/ T ae.
0 h

According to this point of view, the average value of r is

1 [T 1 [* 3

2w 2w
In other words, the average value of r is / r3 df divided by / r? df, because h is con-

0 0
stant. As above, these are challenging integrals to do by means of antiderivatives. Whatever
your method, find evidence that the values of the integrals are 2m(a?b + %021)) and 2mab,
respectively. Does the value for 7 agree with the value found in item 27

440. By viewing r as a function of x for —a — ¢ < x < a — ¢, obtain a as a plausible value
for 7. (Hint: r is in fact a linear function of z.)

441.In the MKS system, the inverse-square constant for acceleration vectors directed toward
the Sun is g = 1.328 x 10?°. (The units are meters® /seconds®.) The mean distance D between
the Earth and the Sun is 1.496 x 10'! meters, and the eccentricity of the Earth’s orbit is
0.0167. Use these values to calculate (a) the smallest distance rg between the Earth and the
Sun; (b) how much time passes between one perihelion and the next; (c) the Earth’s largest
orbital speed.
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Miscellaneous Problems

442.TLet p(x) be a polynomial function whose values have a lower bound. This means that
there is a number m with the property m < p(z) for all real numbers x. Show that p attains
its global minimum, by showing that one of its values is a lower bound

443. (Continuation) State and prove a version for upper bounds.
444. Show that the preceding statements are false for non-polynomial functions.

445.Let p(x,y) = 2% — 22+ y*> + 4y + 5. Show that this polynomial has lower bounds. Does
p attain its global minimum? Explain.

446. Let p(x,y) be a polynomial function whose values have a lower bound. Is it necessarily
true that p attains its global minimum? If so, prove it. If not, invent a counterexample.
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absolutely convergent: A series Ya, for which X|a,| converges. In other words, Xa,
converges, regardless of the pattern of its signs.

acceleration: The derivative of velocity with respect to time.
alternating series: A series of real numbers in which every other term is positive.

AM-GM inequality: The geometric mean never exceeds the arithmetic mean, and the two
agree only when all the numbers are equal.

angle-addition identities: For any angles o and 3, cos(a + ) = cosacos § — sinasin 3
and sin(a + ) = sina cos 8 + cos asin 3.

angle between vectors: When two vectors u and v are placed tail-to-tail, the angle 0

they form can be calculated by the dot-product formula cosf = % If uev = 0 then u
u| |v
is perpendicular to v. If uev < 0 then u and v form an obtuse angle.

antiderivative: If f is the derivative of g, then g is called an antiderivative of f. For
example, g(z) = 2xz/x + 5 is an antiderivative of f(z) = 3/z, because ¢’ = f.

aphelion: The point on an orbit that is farthest from the attracting focus.

arc length: A common application of integration.

arccos: This is another name for the inverse cosine function, commonly denoted cos™!.

arcsin: This is another name for the inverse sine function, commonly denoted sin™?.

arctan: This is another name for the inverse tangent function, commonly denoted tan=!.

arithmetic mean: If n numbers are given, their arithmetic mean is the sum of the numbers,

divided by n.
asteroid: Do not confuse a small, planet-like member of our solar system with an astroid.

astroid: A type of cycloid, this curve is traced by a point on a wheel that rolls without
slipping around the inside of a circle whose radius is four times the radius of the wheel. First
mentioned by Leibniz, in 1715.

average value: If f(z) is defined on an interval a < z < b, the average of the values of f

b

on this interval is : E a/ f(x)dx. If f(x,y) is defined on a region R, the average of the
. .. 1 . .

values of f on this region is arca(R) /Rf(:v, y)dxdy. If f(z,y,z) is defined on a region V,

. .. 1
the average of the values of f on this region is —volume(V) /Vf(x, y,z)dxr dy dz.

average velocity is displacement divided by elapsed time.
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bounded: Any subset of R" that is contained in a suitably large disk.

cardioid: A cycloid, traced by a point on a circular wheel that rolls without slipping around
another circular wheel of the same size.

catenary: Modeled by the graph of the hyperbolic function cosh, this is the shape assumed
by a hanging chain.

center of curvature: Given points p and q on a differentiable plane curve, let ¢ be the
intersection of the lines mormal to the curve at p and q. The limiting position of ¢ as q
approaches p is the center of curvature of the curve at p. For non-planar curves, there are
many normal lines from which to choose, so an “instantaneous” plane must be specified.
One way to select the principal normal direction is to define it as the derivative of the unit
tangent vector.

central force: A spherically symmetric vector field.
centroid of a region: Of all the points in the region, this is their average.
centroid of an arc: Of all the points on the arc, this is their average.

Chain Rule: The derivative of a composite function C(z) = f(g(x)) is a product of deriva-
tives, namely C'(x) = f'(g(z))¢'(z). The actual appearance of this rule changes from one
example to another, because of the variety of function types that can be composed. For
example, a curve can be traced in R3, on which a real-valued temperature distribution is
given; the composite R! — R? — R! simply expresses temperature as a function of time,
and the derivative of this function is the dot product of two vectors.

chord: A segment that joins two points on a curve.
cis f: Stands for the unit complex number cosf + isinf. Also known as .

closed: Suppose that D is a set of points in R", and that every convergent sequence of
points in D actually converges to a point in D. Then D is called “closed.”

comparison of series: Given two infinite series Xa, and Xb,, about which 0 < a,, < b, is
known to be true for all n, the convergence of ¥b, implies the convergence of a,, and the
divergence of Ya, implies the divergence of Xb,,.

concavity: A graph y = f(z) is concave up on an interval if f” is positive throughout the
interval. The graph is concave down on an interval if f” is negative throughout the interval.

conditionally convergent: A convergent series Ya,, for which X|a,| diverges.

conic section: Any graph obtainable by slicing a cone with a cutting plane. This might be
an ellipse, a parabola, a hyperbola, or some other special case.

content: A technical term that is intended to generalize the special cases length, area, and
volume, so that the word can be applied in any dimension.
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continuity: A function f is continuous at a if f(a) = lim f(p). A continuous function is
p—a

continuous at all the points in its domain.

converge (sequence): If the terms of a sequence come arbitrarily close to a fixed value,
the sequence is said to converge to that value.

converge (series): If the partial sums of an infinite series come arbitrarily close to a fixed
value, the series is said to converge to that value.

converge (integral): An improper integral that has a finite value is said to converge to
that value, which is defined using a limit of proper integrals.

cosh: See hyperbolic functions.
critical point: A point in the domain of a function f at which f’ is either zero or undefined.

cross product: Given u = [p,q,r| and v = [d, e, f], a vector that is perpendicular to both
uand vis [¢f —re,rd —pf,pe —qd] =u x v.

curl: A three-dimensional vector field that describes the rotational tendencies of the three-
dimensional field from which it is derived.

curvature: This positive quantity is the rate at which the direction of a curve is changing,
with respect to the distance traveled along it. For a circle, this is just the reciprocal of the
radius. The principal normal vector points towards the center of curvature.

cycloid: A curve traced by a point on a wheel that rolls without slipping. Galileo named
the curve, and Torricelli was the first to find its area.

cylindrical coordinates: A three-dimensional system of coordinates obtained by append-
ing z to the usual polar-coordinate pair (r, ).

decreasing: A function f is decreasing on an interval a < z < b if f(v) < f(u) holds
whenever a < u < v < b does.

derivative: Let f be a function that is defined for points p in R", and whose values f(p)
are in R™. If it exists, the derivative f’(a) is the m x n matrix that represents the best
possible linear approximation to f at a. In the case n = 1 (a parametrized curve in R™),
f'(a) is the m x 1 matrix that is visualized as the tangent vector at f(a). In the case m = 1,
the 1 x n matrix f’(a) is visualized as the gradient vector at a.
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derivative at a point: Let f be a real-valued function that is defined for points in R".
Differentiability at a point a in the domain of f means that there is a linear function L
with the property that the difference between L(p) and f(p) approaches 0 faster than p
. . —L . .
approaches a, meaning that 0 = lim w. If such an L exists, then f’(a) is the
p—a —
matrix that defines L(p — a).

determinant: A ratio that is associated with any square matrix, as follows: Except for
a possible sign, the determinant of a 2 x 2 matrix M is the area of any region R in 2-
dimensional space, divided into the area of the region that results when M is applied to
R. Except for a possible sign, the determinant of a 3 x 3 matrix M is the volume of any
region R in 3-dimensional space, divided into the volume of the region that results when M
is applied to R.

differentiable: A function that has derivatives at all the points in its domain.

differential equation: An equation that is expressed in terms of an unknown function and
its derivative. A solution to a differential equation is a function.

differentials: Things like dx, dt, and dy. Called “ghosts of departed quantities” by George
Berkeley (1685-1753), who was skeptical of Newton’s approach to mathematics.

directional derivative: Given a function f defined at a point p in R", and given a direction
u (a unit vector) in R", the derivative D, f(p) is the instantaneous rate at which the values
of f change when the input varies only in the direction specified by u.

discontinuous: A function f has a discontinuity at a if f(a) is defined but does not equal
lim f(p); a function is discontinuous if it has one or more discontinuities.
p—a

disk: Given a point ¢ in R", the set of all points p for which the distance |p — c| is at most
r is called the disk (or “ball”) of radius r, centered at c.

diverge means does not converge.
divergence: If v is a vector field, its divergence is the scalar function V e v.

domain: The domain of a function consists of all the numbers for which the function returns
a value. For example, the domain of a logarithm function consists of positive numbers only.

double-angle identities: Best-known are sin 20 = 2sinf cosf, cos20 = 2cos?6 — 1, and
cos20 = 1 — 2sin? §; special cases of the angle-addition identities.
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double integral: A descriptive name for an integral whose domain of integration is two-
dimensional. When possible, evaluation is an iterative process, whereby two single-variable
integrals are evaluated instead.

e is approximately 2.71828182845904523536. This irrational number frequently appears in

scientific investigations. One of the many ways of defining it is e = nh_g)lo (1 + %) .
eccentricity: For curves defined by a focus and a directrix, this number determines the
shape of the curve. It is the distance to the focus divided by the distance to the directrix,
measured from any point on the curve. The eccentricity of an ellipse is less than 1, the
eccentricity of a parabola is 1, and the eccentricity of a hyperbola is greater than 1. The
eccentricity of a circle (a special ellipse) is 0. The word is pronounced “eck-sen-trissity”.

ellipse I: An ellipse is determined by a focal point, a directing line, and an eccentricity
between (0 and 1. Measured from any point on the curve, the distance to the focus divided
by the distance to the directrix is always equal to the eccentricity.

ellipse II: An ellipse has two focal points. The sum of the focal radii to any point on the
ellipse is constant.

ellipsoid: A quadric surface, all of whose planar sections are ellipses.

equiangular spiral: The angle formed by the radius vector and the tangent vector is the
same at every point on the spiral. Any polar curve of the form r = b’ has this propery.

Euler’s Method: Given a differential equation, a starting point, and a step size, this
method provides an approximate numerical solution to the equation. Leonhard Euler (1707-
1783) was a prolific Swiss mathematician who did much of his work while blind. He was the
first to find the exact value of the convergent series y - n~2. He had 13 children.

evolute: Given a differentiable curve C, this is the configuration of centers of curvature for

C.

Extended Mean-Value Theorem: If f is a function that is n + 1 times differentiable for
0 <z <b, then

1 2 1 n n 1 n+1 n+1
b) = OV 4+ =f"(0) b cee 2 FMOO) D 1 ) () prt
F6) = F0)+ FOb+ 3P OB + -+ L0 + s 7o)

for some ¢ between 0 and b. This version of the theorem is due to Lagrange.

extreme point: either a local minimum or a local maximum. Also called an extremum.
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Extreme-value Theorem: Suppose that f is a continuous real-valued function that is
defined throughout a closed and bounded set D of points. Then f attains a maximal value
and a minimal value on D. This means that there are points a and b in D, such that
f(a) < f(p) < f(b) holds for all p in D. If f is also differentiable, then a is either a critical
point for f, or it belongs to the boundary of D; the same is true of b.

focal radius: A segment that joins a point on a conic section to one of the focal points;
also used to indicate the length of such a segment.

Fubini’s Theorem: Provides conditions under which the value of an integral is independent
of the iterative approach applied to it.

Fundamental Theorem of Algebra: Every complex polynomial of degree n can be fac-
tored (in essentially only one way) into n linear factors.

Fundamental Theorem of Calculus: In its narrowest sense, differentiation and integra-
tion are inverse procedures — integrating a derivative f’(z) along an interval a < = < b
leads to the same value as forming the difference f(b) — f(a). In multivariable calculus, this
concept evolves.

geometric mean: If n positive numbers are given, their geometric mean is the n'* root of
their product.

geometric sequence: A list in which each term is obtained by applying a constant multi-
plier to the preceding term.

geometric series: An infinite example takes the form a4 ar +ar? +ar® 4+--- = > ar™.
Such a series converges if, and only if, |r| < 1, in which case its sum is 1 a -

global maximum: Given a function f, this may or may not exist. It is the value f(c) that
satisfies f(x) < f(c) for all z in the domain of f.

global minimum: Given a function f, this may or may not exist. It is the value f(c) that
satisfies f(c) < f(x) for all z in the domain of f.

gradient: This is the customary name for the derivative of a real-valued function, especially
when the domain is multidimensional.

Greek letters: Apparently essential for doing serious math! There are 24 letters. The
upper-case characters are

ABTAEZHOIKAMNZOINOPYTY®X U QN
and the corresponding lower-case characters are

afydel(nbieApvéompoTvoxPpw
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Green’s Theorem: Equates a given [line integral to a special double integral over the
region enclosed by the given contour. The self-taught George Green (1793-1841) developed
a mathematical theory of electricity and magnetism.

Gregory’s Series: The alternating sum of the reciprocals of odd integers is a convergent
infinite series. Its sum is 217“

Hadamard: See Prime Number Theorem.
harmonic series: The sum of the reciprocals of the positive integers.
heat equation: A partial differential equation that describes the conduction of heat.

Heaviside operator: The use of a symbol, such as D or D,, to indicate the differentiation
process. The scientist Oliver Heaviside (1850-1925) advocated the use of vector methods,
clarified Maxwell’s equations, and introduced operator notation so that solving differential
equations would become a workout in algebra.

Hessian: See second derivative.

hyperbola I: A hyperbola has two focal points, and the difference between the focal radii
drawn to any point on the hyperbola is constant.

hyperbola II: A hyperbola is determined by a focal point, a directing line, and an eccentric-
ity greater than 1. Measured from any point on the curve, the distance to the focus divided
by the distance to the directrix is always equal to the eccentricity.

hyperbolic functions: Just as the properties of the circular functions sin, cos, and tan are
consequences of their definition using the unit circle 22 + % = 1, the analogous properties
of sinh, cosh, and tanh follow from their definition using the unit hyperbola 2?2 — y? = 1.

hyperboloid: One of the quadric surfaces. Its principal plane of reflective symmetry has a
special property — every section obtained by slicing the surface perpendicular to this plane
is a hyperbola.

implicit differentiation: Applying a differentiation operator to an identity that has not
yet been solved for a dependent variable in terms of its independent variable.

improper integral: This is an integral fD f for which the domain D of integration is
unbounded, or for which the values of the integrand f are undefined or unbounded.

increasing: A function f is increasing on an interval a < z < b if f(u) < f(v) holds
whenever a < u < v < b does.
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indeterminate form: This is an ambiguous limit expression, whose actual value can only
be deduced by looking at the given example. The five most common types are:

. h
0 , examples of which are lim SINE 4nd lim 2-1
0 t—>0 t h—0 h .
1°°, examples of which are lim <1 + l) and lim (1 + Z)
n—o00 n n—o00 n
1
X examples of which are lim 2x+1 and lim 0627
o0 z—oo 32 + 5 z—0 ]og3 xT
0 - 0o, examples of which are lim xlnz and lim <x _1 7r> tan x
z—0 T—/2 2

00 — 00, examples being lim V2 + 4x — x and lim/ secztanz — sec’

T—>00 r—7/2

The preceding limit examples all have different values.

infinite series: To find the sum of one of these, you must look at the limit of its partial
sums. If the limit exists, the series converges; otherwise, it diverges.

inflection point: A point on a graph y = f(x) where f” changes sign.

integral test: A method of establishing convergence for positive, decreasing series of terms,
by comparing them with improper integrals.

integrand: A function whose integral is requested.

o0

interval of convergence: Given a power series Z cn(z — a)”, the a-values for which the
n=0
series (absolutely) converges form an interval, by the Ratio Test. For example, the geometric

oo
series 5 x" converges for —1 < x < 1. Also see radius of convergence.

n=0

inverse function: Any function f processes input values to obtain output values. A function
that undoes what f does is said to be inverse to f, and often denoted f~!. In other words,
f7Y(b) = a must hold whenever f(a) = b does. For some functions (f(x) = 2, for example),
it is necessary to restrict the domain in order to define an inverse.

involute: Given a point on a differentiable curve (whose curvature is of constant sign), an
involute is defined by imagining the point to be the end of a thread that initially coincides
with the curve, and which is then “unwound” from the curve while keeping the thread taut;
the involute is the trace of the free end.

isocline: A curve, all of whose points are assigned the same slope by a differential equation.

isotherm: A special case of the level-curve or level-surface concept.
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Jacobian: A traditional name for the derivative of a function f from R" to R™. For each
point p in the domain space, f'(p) is an m x n matrix. When m = n, the matrix is square,
and its determinant is also called “the Jacobian” of f. Carl Gustav Jacobi (1804-1851) was
a prolific mathematician; one of his lesser accomplishments was to establish the symbol 0
for partial differentiation.

Kepler’s First Law: Planets travel in elliptical orbits, with the Sun at one focus.

Kepler’s Second Law: The vector that points from the Sun to a planet sweeps out area
at a constant rate.

Kepler’s Third Law: Divide the cube of the mean distance from a planet to the Sun by
the square of the time it takes for the planet to complete its orbit around the Sun — the
result is the same number k for every planet. The ratio depends only on the units used in
the calculation. In other words, d® = kt2. If distances are expressed in astronomical units,
k equals 1. The theory applies equally well to the satellites of a planet. Johannes Kepler
(1571-1630) supported his astronomical publications by selling astrological calendars.

I’Hopital’s Rule: A method for dealing with indeterminate forms: If f and g are differ-

entiable, and f(a) = 0 = g(a), then %im M equals %im “;,gg

g(t)

exists. The Marquis de ’'Hopital (1661-1704) wrote the first textbook on calculus.

, provided that the latter limit

Lagrange multipliers: A method for solving constrained extreme-value problems.

Lagrange’s error formula: Given a function f and one of its Taylor polynomials p,, based

at x = a, the difference between f(x) and p,(x) is f (e)(z — a)™!, for some ¢

(n+1)!
that is between a and z. Joseph Lagrange (1736-1813) made many contributions to calculus
and analytic geometry, including a simple notation for derivatives.

Lagrange notation: The use of primes to indicate derivatives.

lemniscate: Given two focal points that are separated by a distance 2¢, the lemniscate

consists of points for which the product of the focal radii is c?.

level curve: The configuration of points p that satisfy an equation f(p) = k, where f is a
real-valued function defined for points in R? and k is a constant.

level surface: The configuration of points p that satisfy an equation f(p) = k, where f is
a real-valued function defined for points in R? and k is a constant.

limacgon: This cycloidal curve is traced by an arm of length 2r attached to a wheel of radius
r that is rolling around a circle of the same size.
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line integral: Given a vector field F' and a path C (which does not have to be linear) in the
domain space, a real number results from “integrating F' along C”.

local maximum: Given a function f, this is a value f(c) that satisfies f(z) < f(c) for all
x in some suitably small interval containing c.

local minimum: Given a function f, this is a value f(c) that satisfies f(c¢) < f(z) for all
x in some suitably small interval containing c.

logarithmic integral: See Hadamard.
logarithmic spiral: A curve described in polar coordinates by an equation r = a - b.

Maclaurin polynomials: Given a highly differentiable function, the values of its derivatives
at = 0 are used to create these ideal approximating polynomials. They can be viewed as
the partial sums of the Maclaurin series for the given function. Colin Maclaurin (1698-1746)
wrote papers about calculus and analytic geometry. He learned about Maclaurin series from
the writings of Taylor and Stirling.

Mean-Value Theorem: If the curve y = f(z) is continuous for a < z < b, and differentiable
for a < x < b, then the slope of the line through (a, f(a)) and (b, f(b)) equals f'(c), where ¢
is strictly between a and b. There is also a version of this statement that applies to integrals.

moment: Quantifies the effect of a force that is magnified by applying it to a lever. Multiply
the length of the lever by the magnitude of the force.

normal vector: In general, this is a vector that is perpendicular to something (a line or a
plane). In the analysis of parametrically defined curves, the principal normal vector (which
points in the direction of the center of curvature) is the derivative of the unit tangent vector.

odd function: A function whose graph has half-turn symmetry at the origin. Such a
function satisfies the identity f(—x) = —f(x) for all x. The name odd comes from the fact
that f(z) = 2™ is an odd function whenever the exponent n is an odd integer.

operator notation: A method of naming a derivative by means of a prefix, usually D, as

in Dcosx = —sinz, or %lnx = %, or D, (u*) = v*(Inwu)D,u.

orthonormal: Describes a set of mutually perpendicular vectors of unit length.

parabola: This curve consists of all the points that are equidistant from a given point (the
focus) and a given line (the directriz).
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parabolic method: A method of numerical integration that approximates the integrand
by a piecewise-quadratic function.

paraboloid: One of the quadric surfaces. Sections obtained by slicing this surface with a
plane that contains the principal axis are parabolas.

partial derivative: A directional derivative that is obtained by allowing only one of the
variables to change.

partial sum: Given an infinite series xo+x, +x2+- - -, the finite series xo+z1+z2+- -+,
is called the n'* partial sum.

path: A parametrization for a curve.
perihelion: The point on an orbit that is closest to the attracting focus.

polar coordinates: Polar coordinates for a point P in the xy-plane consist of two numbers
r and 6, where r is the distance from P to the origin O, and 6 is the size of an angle in
standard position that has OP as its terminal ray.

polar equation: An equation written using the polar variables r and 6.
potential function: An antiderivative for a vector field.

power series: A series of the form ) ¢,(z — a)”. See also Taylor series.
Prime Number Theorem: See logarithmic integral.

prismoidal formula: To find the average value of a quadratic function on an interval, add
two thirds of the value at the center to one sixth of the sum of the values at the endpoints.

Product Rule: The derivative of p(z) = f(x)g(z) is p'(z) = f(z)¢' () + g(x)f'(x). The
actual appearance of this rule depends on what z, f, g, and “product” mean, however. One
can multiply numbers times numbers, numbers times vectors, and vectors times vectors —
in two different ways.

quadric surface: The graph of a quadratic polynomial in three variables.

f(z) is p/(x) = 9(@) [ (x) — f(z)g'(x) is is
o) S7@ b

unchanged in multivariable calculus, because vectors cannot be used as divisors.

Quotient Rule: The derivative of p(z) =

radius of convergence: A power series Yc,(x —a)™ converges for all z-values in an interval
a—1r <x<a+r centered at a. The largest such r is the radius of convergence. It can be
0 or oo.
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radius of curvature: Given a point p on a differentiable curve, this is the distance from p
to the center of curvature for that point.

Ratio Test: Provides a sufficient condition for the convergence of a positive series.
relative maximum means the same thing as local mazimum.
relative minimum means the same thing as local minimum.

Rolle’s Theorem: If f is a differentiable function, and f(a) =0 = f(b), then f'(c) = 0 for
at least one ¢ between a and b. Michel Rolle (1652-1719) described the emerging calculus as
a collection of ingenious fallacies.

saddle point: Given a real-valued differentiable function f, this is a critical point p for f
at which f(p) is not extreme.

second derivative: The derivative of a derivative. If f is a real-valued function of p, then
f'(p) is a vector that is usually called the gradient of f, and f”(p) is a square matrix that
is often called the Hessian of f. The entries in these arrays are partial derivatives.

Second-Derivative Test: When it succeeds, this theorem classifies a critical point for a
differentiable function as a local maximum, a local minimum, or a saddle point (which in the
one-variable case is called an inflection point). The theorem is inconclusive if the determinant
of the second-derivative matrix is 0.

separable: A differential equation that can be written in the form f (y)g—z = g(z).

simple harmonic motion: A sinusoidal function of time that models the movement of
some physical objects, such as weights suspended from springs.

sinh: See hyperbolic functions.

speed: The magnitude of velocity. For a parametric curve (x,y) = (f(¢), g(t)), it is given
by the formula /(x')? + (y')?. Notice that that this is not the same as dy/dz.

spherical coordinates: Points in three-dimensional space can be described as (p, 0, ¢),
where p is the distance to the origin, 6 is longitude, and ¢ is co-latitude.

stereographic projection: Establishes a one-to-one correspondence between the points of
a plane and the points of a punctured sphere, or between the points of a line and the points
of a punctured circle.

tacking: A technical term used by sailors.

tanh: See hyperbolic functions.
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Taylor polynomial: Given a differentiable function f, a Taylor polynomial > ¢,(x — a)"
matches all derivatives at x = a through a given order. The coefficient of (z — a)" is given

by Taylor’s formula ¢, = l' f™(a). Brook Taylor (1685-1731) wrote books on perspective,
n

and re-invented Taylor series.
Taylor series: A power series Y ¢p,(x — a)™ in which the coefficients are calculated using

Taylor’s formula ¢, = l‘ f™(a). The series is said to be “based at a.”
n!

Taylor’s Theorem: The difference f(b) — p,(b) between a function f and its n'* Taylor

b
polynomial is / f("“)(x)% (b —x)"dz.

telescope: Refers to infinite series whose partial sums happen to collapse.
torus: A surface that models an inner tube, or the boundary of a doughnut.

triangle inequality: The inequality PQ) < PR + R(Q) says that any side of any triangle is
at most equal to the sum of the other two sides.

triple scalar product: A formula for finding the volume of parallelepiped, in terms of its
defining vectors. It is the determinant of a 3 x 3 matrix.

velocity: This n-dimensional vector is the derivative of a differentiable path in R". When
n = 2, whereby a curve (x,y) = (f(t),g(t)) is described parametrically, the velocity is

df d dr d de\*  (dy\’
[d—];, d_ﬂ or {d—f, d_i]’ which is tangent to the curve. Its magnitude \/(d—f> + (d%) is

the speed. The components of velocity are themselves derivatives.

vector field: This is a descriptive name for a function F' from R" to R". For each p in the
domain, F(p) is a vector. The derivative (gradient) of a real-valued function is an example
of such a field.

It was

2
i T _—2.2.4.4.6 6 . _y 4FE k! 1
Wallis product formula is 5 =133 5 57 _kh—glo( (2k)!)2k:+1'

published in 1655 by John Wallis (1616-1703), who made original contributions to calculus
and geometry.

weighted average: A sum p1y; + pay2 + p3ys + -+ + puyy is called a weighted average of
the numbers y1, y2, ¥s3,. .., Yn, provided that p; + ps + p3s + - -+ + p, = 1 and each weight py
is nonnegative. If p, = - for every k, this average is called the arithmetic mean.

zero: A number that produces 0 as a functional value. For example, V/2 is one of the zeros
of the function f(z) = 2* — 2, and 1 is a zero of any logarithm function, because log 1 is 0.
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Selected Derivative Formulas

1. D,au=a- D,u (a is constant)

2. Dyuww=u-Dyv+v-Dyu

3. D,

u _ v-Dyu—u-Dyv
v 02

4. D,u™ = nu™ ' - Dyu

5 D,lnu= 1. D,u

7. Dge* =e"- Dyu

9. D,sinu =cosu-Dyu

11. D tanu = sec’u - D,u

13. D,secu =secutanu - Dyu

15. D, sin"tu = 1. D,u
V1 —u?
17. D, cos tu = 1 . D,u
V1 —u?
19. D, tan ' u = 1 LU
1+ u?

21. D, f(u) = D,f(u) - Dyu

22. D,u’ =vu’"' - Dyu+ullnu - Dyv
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6. D, log, u = (log, e) 1. pu
u

8. D,a* = (lna)a" - D,u

10. D cosu = —sinu - D,u

12. D, cotu = —csc?u - Dyu

14. D,cscu = —cscucotu - Dyu
16. D, arcsinu = 1 . D.u

18. D, arccosu = -1 . D,u

20. D, arctanu =

- D
14 u?
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Selected Antiderivative Formulas

1./u"du:L
n+1

3. /%du:lnluH—C

u"t O (n#£ 1)

=~

6. [ nudu=uvlnu—u+C

/a“ du =
lna

7. /sinudu: —cosu+ C

9. /tanudu:ln|secu| +C

5./e“du:6“—|—0

8. /Cosudu— sinu + C

cotudu = In|sinu| + C

1
51

1+ cosu
1 —cosu

cscudu=—=1In

12. /cscudu-ln‘tan ‘—l—C

+C

11. /secudu-ln\secu—i—tanu!—i—(;’

13. /secudu— % +C

15. /u2—|—a2 —%arctan +C (a#0)
16./u2ia2du:%lnu a #0)
17'/;2“—:_@26[ mln‘u +a2|+—arctan—+C' (a #0)

18'/(u—a)1(u—b)duzaibl ’“_a‘+0 (a #b)

u—al®

k

19./( mu + k du = —""_In

u—a)(u—b) a—>b " |u—b

20. L'r ¢ (a#0)

U = arcsm

[ G
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21. du—ln)ujt\/u?—a?‘—{—c

| =

22. u:ln‘u+VU2+a2 +C

1
—d
/\/u2+a2
2
23./\/aQ—quu:%u\/a2—u2+%arcsing—i—C (a #0)
a

2
24./\/uQ—cﬂdu:%uqu—a?—%1n‘u+Vu2—a2 +C (a#0)
25. /\/u2—|—a2du——ux/u2+a2 ln)u+\/u2+&2 +C

(uta)’

2
U,3+6L3

=)

1 _ 1 (1
'/mdu—;(aln

—1—% arctan2a\/_ )-I—C’ (a #0)

1

27. P “ (asinbu — beosbu) + C

e™sinbudu =

1

28.
aZ + b2 b2

“cosbudu = “(acosbu + bsinbu) + C

1

29. 62 _

sin au sin bu du =

5 (acos ausinbu — bsinaucosbu) + C (a® # b?)

30. [ cosaucosbudu = bcos ausinbu — asinaucosbu) + C  (a? # b?)

b2—(12(

b2 — g2

32, [wlhudu=—1— ”+11n|u|—#un+1+0 (n # —1)

n+1 (n+1)2

33. [ sin udu——l sin” ucosu—i——/sm *udu+C (1<n)

34.

31. /sm au cos budu = —— (bsin ausin bu + a cos au cosbu) + C (a® # b?)

Ccos udu- = cos” usmu+—/cos *udu+C (1<n)
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Hyperbolic Functions

el +et
2

cosht =

The Circular-Hyperbolic Analogy
?+yt=1
T = cost Yy =sint

cos’t +sin’t = 1

cos(t + u) = costcosu — sintsinu

sin(t + u) = sint cosu + cost sinu

sin2t = 2sintcost

cos 2t = cos?t — sin’t

cos’t = % (14 cos(2t))

sin?t = % (1 — cos(2t))
%cost:—sint

%sint:cost

d _ 1 _ 2
atant— o2t =sec”t
isect:secttant

dt

icsctz—csetcott

dt

d 1 2
—cott = — = —cscot

dt sin®t

d 1 -1

- t=——— (—1<t<l
dtCOS — ( )
d . -1, __ 1 _

- Sin t= — (—l<t<1)
d -1 1

=1 t=—

dt an 14 ¢2
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sinht =

86

et —

6—t

t —t
tanht = £ —¢
et + et
$2 _y2 =1
x = cosht y = sinht

cosh?t — sinh®t = 1

cosh(t + u) = coshtcoshu + sinh ¢ sinh u
sinh(¢ 4+ u) = sinh t cosh u 4 cosh ¢ sinh u
sinh 2¢ = 2sinh ¢ cosht

cosh 2t = cosh®t + sinh® ¢

cosh®t = —% (1 4 cosh(2t))

sinh? ¢ = _% (1 — cosh(2¢))

d cosht = sinht

dt

d sinht = cosht

dt

d tanht = 1 5 = sech’t

dt cosh”t

isecht = —secht tanht

dt

icscht = —cscht coth ¢

dt

icotht = —— L 5 = —csch?t

dt sinh® ¢

d —1 1

—cosh™ 't = —— (1<t

o cos T ( )

d sinh~ 't = L

dt t2+1

d 1 1

—tanh "t = -1<t<l1
ar e <1)
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